摘要:
A radiography system allow for user determination of a region of interest on a subject prior to X-ray exposure. The region of interest is defined by user interaction with an image, a pointer system, or the like. The region of interest is then translated to the imaging coordinate system, such as in the plane of a digital detector. The region is then used for exposure control during an imaging sequence, either in an open or closed-loop manner.
摘要:
A radiography system allow for user determination of a region of interest on a subject prior to X-ray exposure. The region of interest is defined by user interaction with an image, a pointer system, or the like. The region of interest is then translated to the imaging coordinate system, such as in the plane of a digital detector. The region is then used for exposure control during an imaging sequence, either in an open or closed-loop manner.
摘要:
A method of manufacturing a collimator mandrel having variable attenuation characteristics is presented. The manufacturing process includes the placement of a layer of attenuating material on a core of base material. The layer of attenuating material is relatively thin and varies in thickness circumferentially around the core. The collimator mandrel may be manufactured by placing a cast about a core of non-attenuating material, filling a void between the cast and the core with an attenuating material, allowing the material to cure, and removing the cast from the assembly.
摘要:
The present invention provides a method and apparatus for tomosynthesis image quality control for a tomosynthesis imaging system, the method and apparatus addressing the measurement of in-plane resolution and slice thickness, via the measurement of modulation transfer function (MTF), the method and apparatus including: positioning a phantom having an edge of predetermined sharpness at a predetermined angle relative to an imaging plane of an x-ray detector; performing tomosynthesis acquisition and generating one or more slice images using one or more three-dimensional reconstruction algorithms; selecting a slice image to be measured from the one or more slice images; identifying a sharpest edge in the slice image to be measured, wherein the sharpest edge in the slice image to be measured includes the in-focus portion of the phantom; inputting the slice image to be measured and coordinates of the sharpest edge in the slice image to be measured into an MTF algorithm; and, using the MTF algorithm, calculating the in-plane resolution and slice thickness of the slice image to be measured.
摘要:
The presently described technology provides a tomosynthesis imaging system that comprises an x-ray tube and an anti-scatter grid. The x-ray tube is configured to emit x-rays from a plurality of positions during movement of the x-ray tube along a long axis of a mobile patient surface. The anti-scatter grid is configured to filter out scattered x-rays and includes a grid line parallel to the long axis of the mobile patient surface. The x-rays emitted from the plurality of positions are reconstructed into at least one image of at least one plane of a patient anatomy. The described technology is useful in emergency or trauma applications where a patient may be quickly and easily moved on a mobile patient surface to a position near an x-ray detector used in combination with the x-ray tube and anti-scatter grid.
摘要:
A method of manufacturing a collimator mandrel having variable attenuation characteristics is presented. The manufacturing process includes the placement of a layer of attenuating material on a core of base material. The layer of attenuating material is relatively thin and varies in thickness circumferentially around the core. The collimator mandrel may be manufactured by placing a cast about a core of non-attenuating material, filling a void between the cast and the core with an attenuating material, allowing the material to cure, and removing the cast from the assembly.
摘要:
A method of manufacturing a collimator mandrel having variable attenuation characteristics is presented. The manufacturing process includes the placement of a layer of attenuating material on a core of base material. The layer of attenuating material is relatively thin and varies in thickness circumferentially around the core. The collimator mandrel may be manufactured by placing a cast about a core of non-attenuating material, filling a void between the cast and the core with an attenuating material, allowing the material to cure, and removing the cast from the assembly.
摘要:
A method and apparatus for tomosynthesis image quality control for a tomosynthesis imaging system. The method and apparatus including: positioning a phantom having an edge of predetermined sharpness at a predetermined angle relative to an imaging plane of an x-ray detector; performing tomosynthesis acquisition and generating one or more slice images using one or more three-dimensional reconstruction algorithms; selecting a slice image to be measured from the one or more slice images; identifying a sharpest edge in the slice image to be measured, wherein the sharpest edge in the slice image to be measured includes the in-focus portion of the phantom; inputting the slice image to be measured and coordinates of the sharpest edge in the slice image to be measured into a modulation transfer function (MTF) algorithm; and, using the MTF algorithm, calculating the in-plane resolution and slice thickness of the slice image to be measured.
摘要:
A method of manufacturing a collimator mandrel having variable attenuation characteristics is presented. The manufacturing process includes the placement of a layer of attenuating material on a core of base material. The layer of attenuating material is relatively thin and varies in thickness circumferentially around the core. The collimator mandrel may be manufactured by placing a cast about a core of non-attenuating material, filling a void between the cast and the core with an attenuating material, allowing the material to cure, and removing the cast from the assembly.
摘要:
A method of fabricating a portable x-ray detector includes coupling a gravity sensor to the portable x-ray detector and coupling a processor to the gravity sensor. The processor is programmed to receive an input from the gravity sensor, determine a physical orientation of the portable x-ray detector based on the received input, and generate an indication to reposition the portable x-ray detector. A portable detector and an imaging system including the portable detector are also provided.