摘要:
This invention relates to a hearing instrument, which comprises a first microphone converting ambient sound to an ambient sound signal, a signal processor generating a processed sound signal based on the ambient sound signal, a controllable output stage generating a driving signal based on the processed sound signal and in accordance with a control signal, a speaker unit generating a sound in the ear canal based on said driving signal, a second microphone located in the ear canal of the user and converting the sound in the ear canal to the monitor sound signal, and a linearization stage comparing the processed sound signal and the monitor sound signal and generating the control signal based thereon.
摘要:
Disclosed is a hearing aid, where at least part of the hearing aid is adapted to be inserted into an ear canal of a user such that one end of the hearing aid and the tympanic membrane in the ear canal define a residual space of the ear canal, the hearing aid comprising an ambient space input transducer adapted to convert ambient sound to an electric sound signal, when the ambient sound reaches the ear of a user from an ambient space, a processor connected to said ambient space input transducer and adapted to process said electric sound signal, an output transducer connected to said processor and adapted to convert said processed electric sound signal to a sound pressure in the residual space of the ear canal, and wherein the hearing aid further comprises a residual space input transducer connected to said processor and arranged to predominantly receive said sound pressure in the residual space, and wherein the residual space input transducer is adapted to convert said sound pressure to an electric residual space signal for compensating acoustic feedback.
摘要:
This invention relates to a hearing instrument (100), which comprises a first microphone (102) converting ambient sound to an ambient sound signal, a signal processor (104) generating a processed sound signal based on the ambient sound signal, a controllable output stage (106) generating a driving signal based on the processed sound signal and in accordance with a control signal, a speaker unit (110) generating a sound in the ear canal based on said driving signal, a second microphone (116) located in the ear canal of the user and converting the sound in the ear canal to the monitor sound signal, and a linearization stage (108) comparing the processed sound signal and the monitor sound signal and generating the control signal based thereon.
摘要:
Disclosed is a hearing aid, where at least part of the hearing aid is adapted to be inserted into an ear canal of a user such that one end of the hearing aid and the tympanic membrane in the ear canal define a residual space of the ear canal, the hearing aid comprising an ambient space input transducer adapted to convert ambient sound to an electric sound signal, when the ambient sound reaches the ear of a user from an ambient space, a processor connected to said ambient space input transducer and adapted to process said electric sound signal, an output transducer connected to said processor and adapted to convert said processed electric sound signal to a sound pressure in the residual space of the ear canal, and wherein the hearing aid further comprises a residual space input transducer connected to said processor and arranged to predominantly receive said sound pressure in the residual space, and wherein the residual space input transducer is adapted to convert said sound pressure to an electric residual space signal for compensating acoustic feedback.
摘要:
This invention relates to a hearing instrument (100), which comprises a first microphone (102) converting ambient sound to an ambient sound signal, a signal processor (104) generating a processed sound signal based on the ambient sound signal, a controllable output stage (106) generating a driving signal based on the processed sound signal and in accordance with a control signal, a speaker unit (110) generating a sound in the ear canal based on said driving signal, a second microphone (116) located in the ear canal of the user and converting the sound in the ear canal to the monitor sound signal, and a linearization stage (108) comparing the processed sound signal and the monitor sound signal and generating the control signal based thereon.
摘要:
The present invention refers to a hearing device system which comprises: at least a first hearing device (10) including a first control unit (14) and a second hearing device (30) including a second control unit (37) for processing acoustic signals. Each of the hearing devices includes a transceiver (20, 34) for establishing a data communications link (40) between the first and the second hearing devices. At least one of the hearing devices including a sensing means (18, 33) for detecting, whether a telephone handset (19) is placed close to the hearing device. Each of the control units includes at least a first and a second control mode. Both hearing devices are adapted for outputting the processed acoustic signals in the first control mode. Upon detection of the telephone handset the first hearing device is shifted to the second control mode for inhibiting the output of the processed acoustic signals and establishing the data communications link for transmitting the processed acoustic signals to the second hearing device. The second hearing device is also shifted to the second control mode for receiving the processed acoustic signals transmitted from the first hearing device and outputting the transmitted acoustic signals.
摘要:
The invention concerns a microphone with a membrane. The membrane has a first side which is in fluid contact with the surroundings and a second side which is facing a back chamber, where a barometric relief opening or vent opening is provided between the back chamber and the surroundings. According to the invention control means are provided for controlling the barometric relief opening.
摘要:
Hearing aid with a microphone system for providing a directional response by generating a fixed forward pointing directivity pattern and a fixed backward pointing directivity pattern and where the forward and backward directivity pattern signals are mixed at a ratio, which ensures energy minimization of the output signal, and where the fixed directivity patterns are set for optimized directivity when the microphone system is located near or at an object.
摘要:
Disclosed is method of generating an audible signal in a hearing aid by estimating a weighting function of received audio signals, the hearing aid is adapted to be worn by a user; the method comprises the steps of: estimating a directional signal by estimating a weighted sum of two or more microphone signals from two or more microphones, where a first microphone of the two or more microphones is a front microphone, and where a second microphone of the two or more microphones is a rear microphone; estimating a direction-dependent time-frequency gain, and synthesizing an output signal; wherein estimating the direction-dependent time-frequency gain comprises: obtaining at least two directional signals each containing a time-frequency representation of a target signal and a noise signal; and where a first of the directional signals is defined as a front aiming signal, and where a second of the directional signals is defined as a rear aiming signal; using the time-frequency representation of the target signal and the noise signal to estimate a time-frequency mask; and using the estimated time-frequency mask to estimate the direction-dependent time-frequency gain.
摘要:
Disclosed is method of generating an audible signal in a hearing aid by estimating a weighting function of received audio signals, the hearing aid is adapted to be worn by a user; the method comprises the steps of:estimating a directional signal by estimating a weighted sum of two or more microphone signals from two or more microphones, where a first microphone of the two or more microphones is a front microphone, and where a second microphone of the two or more microphones is a rear microphone;estimating a direction-dependent time-frequency gain, and synthesizing an output signal;wherein estimating the direction-dependent time-frequency gain comprises: obtaining at least two directional signals each containing a time-frequency representation of a target signal and a noise signal; and where a first of the directional signals is defined as a front aiming signal, and where a second of the directional signals is defined as a rear aiming signal; using the time-frequency representation of the target signal and the noise signal to estimate a time-frequency mask; and using the estimated time-frequency mask to estimate the direction-dependent time-frequency gain.