Abstract:
A method for manufacturing a semiconductor device is discussed. The method includes forming a gate electrode on a substrate, forming a gate insulating film over the substrate, depositing an In—Ga—Zn oxide over the gate insulating film while heating the substrate to a temperature of 200 to 300° C., an atomic percent ratio of Zn in the In—Ga—Zn oxide as-deposited being higher than that of In or Ga, heat-treating the deposited In—Ga—Zn oxide at a temperature of 200 to 350° C., thereby forming an active layer crystallized throughout an entire thickness of the active layer, and forming a source electrode and a drain electrode.
Abstract:
A display device includes a gate electrode on a substrate of a semiconductor device, a gate insulating film over the gate electrode, an active layer comprising an oxide including indium, zinc and gallium on the gate insulating film, and overlapping the gate electrode, and a source electrode and a drain electrode that are spaced apart from each other, wherein the active layer is formed from a zinc-rich target material, and an atomic % ratio of indium, zinc and gallium in the active layer is different from an atomic % ratio of the zinc-rich target material.
Abstract:
An oxide semiconductor crystallization method may include depositing an In—Ga—Zn oxide over the substrate while heating a substrate to a temperature of 200 to 300° C., and heat-treating the deposited In—Ga—Zn oxide at a temperature of 200 to 350° C., thereby forming an oxide semiconductor layer crystallized throughout an entire thickness thereof.