Abstract:
An array substrate includes a substrate; an oxide semiconductor layer on the substrate, the oxide semiconductor layer including an active area and source and drain areas at both sides of the active area; a gate insulating layer and a gate electrode sequentially on the active area of the oxide semiconductor layer; an inter insulating layer on the gate electrode and having first and second semiconductor contact holes that expose the source and drain areas respectively; and source and drain electrodes on the inter insulating layer and contacting the source and drain areas through the first and second semiconductor contact holes, respectively, wherein the first and second semiconductor contact holes are disposed in two regions.
Abstract:
An organic light emitting diode display device comprises a driving thin film transistor including a first semiconductor layer, a gate insulating layer formed on the first semiconductor layer. The device further includes a storage capacitor including a first capacitor electrode electrically coupled to a drain electrode of the driving thin film transistor, a buffer layer formed on the first capacitor electrode, a second semiconductor layer formed on the buffer layer, and a second capacitor electrode formed on the second semiconductor layer and electrically coupled to a gate electrode of the driving thin film transistor. The device also includes an organic light emitting diode connected to the drain electrode of the driving transistor. The gate insulating layer has at least one hole in a region where the gate insulating layer overlaps the second semiconductor layer, thereby exposing the second semiconductor layer to the second capacitor electrode.
Abstract:
An organic light emitting diode display device comprises a driving thin film transistor including a first semiconductor layer, a gate insulating layer formed on the first semiconductor layer. The device further includes a storage capacitor including a first capacitor electrode electrically coupled to a drain electrode of the driving thin film transistor, a buffer layer formed on the first capacitor electrode, a second semiconductor layer formed on the buffer layer, and a second capacitor electrode formed on the second semiconductor layer and electrically coupled to a gate electrode of the driving thin film transistor. The device also includes an organic light emitting diode connected to the drain electrode of the driving transistor. The gate insulating layer has at least one hole in a region where the gate insulating layer overlaps the second semiconductor layer, thereby exposing the second semiconductor layer to the second capacitor electrode.
Abstract:
An organic light emitting diode display device comprises a driving thin film transistor including a first semiconductor layer, a gate insulating layer formed on the first semiconductor layer. The device further includes a storage capacitor including a first capacitor electrode electrically coupled to a drain electrode of the driving thin film transistor, a buffer layer formed on the first capacitor electrode, a second semiconductor layer formed on the buffer layer, and a second capacitor electrode formed on the second semiconductor layer and electrically coupled to a gate electrode of the driving thin film transistor. The device also includes an organic light emitting diode connected to the drain electrode of the driving transistor. The gate insulating layer has at least one hole in a region where the gate insulating layer overlaps the second semiconductor layer, thereby exposing the second semiconductor layer to the second capacitor electrode.