摘要:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having a first region and a second region; forming a gate layer on the substrate; forming a first gate dielectric layer on the gate layer; forming a first channel layer on the first region and a second channel layer on the second region; and forming a first source/drain on the first channel layer and a second source/drain on the second channel layer.
摘要:
Disclosed is a display device that includes an array substrate that includes a display region and a first non-display region, and includes a signal line connected to a pixel in the display region; a first signal transfer line that is at the first non-display region and transfers a test signal, and a second signal transfer line that transfers a test enable signal; a connection pattern connected to the first signal transfer line; a test transistor that is connected between the signal line and the connection pattern, and is connected to the second signal transfer line; and an electrostatic induction element that includes a dummy device in the form of either a dummy pattern and/or a dummy test transistor, the dummy pattern including a dummy connection pattern connected to the first signal transfer line, the dummy test transistor connected to the second signal transfer line.
摘要:
A TFT substrate includes a base plate on which first and second gate electrodes respectively corresponding to first and second TFTs are formed. A gate insulation layer, a semiconductor layer, and an etch stop layer are sequentially formed on the base plate and the first and second electrodes. A single photolithographic process is conducted simultaneously on the gate insulation layer, the semiconductor layer, and the etch stop layer with the same gray tone mask to form separate semiconductor portions for the two TFTs and also form contact holes in the etch stop layer and the gate insulation layer to receive sources and drains of the two TFTs to be deposited therein and in contact with the two semiconductor portions.
摘要:
A manufacturing method and a manufacturing equipment of a thin film transistor substrate are provided. In the manufacturing method, after forming a gate and a gate insulating layer of a thin film transistor, a semiconductor layer and a first protection layer are sequentially deposited. After patterning the first protection layer, the patterned first protection layer is used as a mask to pattern the semiconductor layer to form a semiconductor channel of the thin film transistor. By the above solution, the invention can reduce the number of mask and therefore is beneficial to reduce the cost.
摘要:
A method for forming a thin-film layer pattern, a display substrate and a manufacturing method thereof, and a display device are provided. The method for forming the thin-film layer pattern comprises: forming a first thin-film layer to be patterned on a substrate; forming a first overcoat (OC) layer on a surface of the first thin-film layer; forming a first overcoat layer pattern by beam melting; and removing the first thin-film layer not covered by the first overcoat layer pattern to form a first thin-film layer pattern. The method adopts beam melting process and hence can improve the accuracy and the resolution of the display substrate, improve the product quality and reduce the manufacturing cost.
摘要:
Embodiments of the disclosure generally provide methods of forming a silicon containing layers in TFT devices. The silicon can be used to form the active channel in a LTPS TFT or be utilized as an element in a gate dielectric layer, a passivation layer or even an etch stop layer. The silicon containing layer is deposited by a vapor deposition process whereby an inert gas, such as argon, is introduced along with the silicon precursor. The inert gas functions to drive out weak, dangling silicon-hydrogen bonds or silicon-silicon bonds so that strong silicon-silicon or silicon-oxygen bonds remain to form a substantially hydrogen free silicon containing layer.
摘要:
Provided is a flexible device with fewer defects caused by a crack or a flexible device having high productivity. A semiconductor device including: a display portion over a flexible substrate, including a transistor and a display element; a semiconductor layer surrounding the display portion; and an insulating layer over the transistor and the semiconductor layer. When seen in a direction perpendicular to a surface of the flexible substrate, an end portion of the substrate is substantially aligned with an end portion of the semiconductor layer, and an end portion of the insulating layer is positioned over the semiconductor layer.
摘要:
A method for forming a thin-film layer pattern, a display substrate and a manufacturing method thereof, and a display device are provided. The method for forming the thin-film layer pattern comprises: forming a first thin-film layer to be patterned on a substrate; forming a first overcoat (OC) layer on a surface of the first thin-film layer; forming a first overcoat layer pattern by beam melting; and removing the first thin-film layer not covered by the first overcoat layer pattern to form a first thin-film layer pattern. The method adopts beam melting process and hence can improve the accuracy and the resolution of the display substrate, improve the product quality and reduce the manufacturing cost.
摘要:
The present invention has an object to perform a peeling treatment in a short time. Peeling is performed while a peeling layer is exposed to an atmosphere of an etching gas. Alternatively, peeling is performed while an etching gas for a peeling layer is blown to the peeling layer in an atmosphere of an etching gas. Specifically, an etching gas is blown to a part to be peeled while a layer to be peeled is torn off from a substrate. Alternatively, peeling is performed in an etchant for a peeling layer while supplying an etchant to the peeling layer.
摘要:
A method of fabricating a stable high mobility amorphous MOTFT includes a step of providing a substrate with a gate formed thereon and a gate dielectric layer positioned over the gate. A carrier transport structure is deposited by sputtering on the gate dielectric layer. The carrier transport structure includes a layer of amorphous high mobility metal oxide adjacent the gate dielectric and a relatively inert protective layer of material deposited on the layer of amorphous high mobility metal oxide both deposited without oxygen and in situ. The layer of amorphous metal oxide has a mobility above 40 cm2/Vs and a carrier concentration in a range of approximately 1018 cm−3 to approximately 5×1019 cm−3. Source/drain contacts are positioned on the protective layer and in electrical contact therewith.