Abstract:
An array substrate for an FFS mode LCD device includes a gate line and a gate pad electrode on a substrate; a common line parallel to the gate line; a data line extending along a second direction in a display area and a data pad electrode disposing in a non-display area; a thin film transistor electrically connected to the gate and data lines; a first passivation layer covering the thin film transistor and the data line; a second passivation layer on the first passivation layer and having a first thickness in the display area and a second thickness in the non-display area; a common electrode on the second passivation layer and connected to the common line; a third passivation layer on the common electrode; and a pixel electrode, a gate auxiliary pad electrode and a data auxiliary pad electrode on the third passivation layer.
Abstract:
An array substrate for an FFS mode LCD device includes a gate line and a gate pad electrode on a substrate; a common line parallel to the gate line; a data line extending along a second direction in a display area and a data pad electrode disposing in a non-display area; a thin film transistor electrically connected to the gate and data lines; a first passivation layer covering the thin film transistor and the data line; a second passivation layer on the first passivation layer and having a first thickness in the display area and a second thickness in the non-display area; a common electrode on the second passivation layer and connected to the common line; a third passivation layer on the common electrode; and a pixel electrode, a gate auxiliary pad electrode and a data auxiliary pad electrode on the third passivation layer.
Abstract:
A method of manufacturing an organic light emitting display device can include providing a source electrode, a drain electrode and a signal pad on a substrate; providing a passivation layer on the source electrode, the drain electrode and the signal pad, providing a planarization layer on the passivation layer; providing a anode electrode connected with the source electrode or drain electrode, and providing an auxiliary electrode spaced apart from the anode electrode; providing a contact hole for exposing the signal pad by removing a predetermined portion of the passivation layer; providing a bank on one side and the other side of the anode electrode and one side and the other side of the auxiliary electrode; providing an organic emitting layer on the anode electrode; and providing a cathode electrode connected with the auxiliary electrode and provided on the organic emitting layer, in which the signal pad includes a lower signal pad, a central signal pad and an upper signal pad, and the central signal pad is surrounded by the lower signal pad, the upper signal pad and the passivation layer.
Abstract:
Discussed are an organic light emitting display device and a method of manufacturing the same. The organic light emitting display device according to an embodiment includes a substrate including an active area and a pad area, a thin film transistor (TFT) in the active area of the substrate, an anode electrode on the TFT, an organic emission layer on the anode electrode, a cathode electrode on the organic emission layer, an auxiliary electrode connected to the cathode electrode and disposed on the same layer as the anode electrode, a signal pad in the pad area of the substrate, and a pad electrode connected to the signal pad to cover a top of the signal pad for preventing the top of the signal pad from being corroded. The TFT includes a gate electrode. The signal pad is disposed on the same layer as the gate electrode.
Abstract:
Provided are an organic light-emitting display apparatus and a method of manufacturing the same. An organic light-emitting display apparatus includes: a substrate including an active area and a pad area, an anode electrode in the active area, an organic emission layer on the anode electrode, a cathode electrode on the organic emission layer, an auxiliary electrode connected to the cathode electrode, a signal pad in the pad area, and a first pad electrode connected to the signal pad, the first pad electrode covering a top of the signal pad, the first pad electrode being configured to prevent the top of the signal pad from being corroded, wherein the auxiliary electrode includes a first auxiliary electrode and a second auxiliary electrode connected to the first auxiliary electrode through a contact hole, and wherein the first pad electrode includes a same material as the first auxiliary electrode.
Abstract:
Disclosed is a thin-film transistor array substrate including a Gate driver In Panel (GIP). The GIP includes a first wiring on a substrate, a first insulating film covering the first wiring, a second wiring on the first insulating film, a second insulating film covering the second wiring, a third insulating film over the second insulating film, first and second contact holes to expose the first and second wirings, and a third wiring on the third insulating film for connection of the first and second wirings. The third insulating film includes a first area corresponding to the first and second contact holes, a second area corresponding to a region between the first and second contact holes within a first thickness range, and a remaining third area within a second thickness range, the minimum value of the first thickness range being greater than the maximum value of the second thickness range.
Abstract:
An organic light emitting display device and a method of manufacturing the same are provided that may reduce the resistance of a second electrode and may prevent corrosion and metal migration of a pad electrode without adding a separate mask process, or while reducing the number of mask processes. In the organic light emitting display device, an auxiliary line is connected to a second electrode through an auxiliary electrode, which is provided in the same layer as a first electrode, and a pad cover electrode is configured to cover an upper surface and a side surface of a pad connection electrode so as to prevent the pad connection electrode connected to a pad from being exposed outward.
Abstract:
An organic light emitting display device and a method of manufacturing the same are provided that may reduce the resistance of a second electrode and may prevent corrosion and metal migration of a pad electrode without adding a separate mask process, or while reducing the number of mask processes. In the organic light emitting display device, an auxiliary line is connected to a second electrode through an auxiliary electrode, which is provided in the same layer as a first electrode, and a pad cover electrode is configured to cover an upper surface and a side surface of a pad connection electrode so as to prevent the pad connection electrode connected to a pad from being exposed outward.
Abstract:
An organic light emitting display device can include a substrate; an anode electrode on the substrate; an organic emitting layer on the anode electrode; a cathode electrode on the organic emitting layer; an auxiliary electrode connected with the cathode electrode; a first bank on an upper surface of the auxiliary electrode; and a second bank disposed between the auxiliary electrode and the anode electrode, in which the second bank is formed of a same material as the first bank, and the first and second banks are spaced apart from each other, and a width of an upper surface of the first bank is larger than a width of a lower surface of the first bank, and the cathode electrode is connected with the auxiliary electrode via a gap space between the first bank and the second bank.
Abstract:
Disclosed is an organic light emitting display apparatus in which an anode electrode, an organic emission layer, a cathode electrode, and an auxiliary electrode connected to the cathode electrode and disposed on the same layer as that of the anode electrode are disposed in an active area of the substrate, a signal pad and a pad electrode connected to the signal pad and covering a top of the signal pad are disposed in a pad area of the substrate, and a top of the pad electrode has lower oxidation rate than the top of the signal pad.