Abstract:
Disclosed are an organic light emitting display device and a method of manufacturing the same. In the organic light emitting display, an anode connected to a thin film transistor and a bank disposed along the edge of the anode are simultaneously formed through one mask process, and a partition is formed to cover the side surface of the anode, thereby preventing damage to a pad cover electrode by an etching solution or etching gas of the anode without any separate pad protective film.
Abstract:
An array substrate for a display device includes a first thin film transistor (TFT) including a first semiconductor layer, a first gate electrode corresponding to the first semiconductor layer, a first source electrode and a first drain electrode; a second TFT including a second semiconductor layer, a second gate electrode corresponding to the second semiconductor layer, a second source electrode and a second drain electrode; a first transparent capacitor electrode connected to the first drain electrode; a first passivation layer on the first transparent capacitor electrode; a second transparent capacitor electrode on the first passivation layer and connected to the second drain electrode, the second transparent capacitor electrode overlapping the first transparent capacitor electrode; a second passivation layer on or over the first passivation layer and the second transparent capacitor electrode; and a first electrode on the second passivation layer and connected to the second transparent capacitor electrode.
Abstract:
Disclosed are an organic light emitting display device to improve optical efficiency and prevent deterioration in reliability of thin film transistors, and a method of manufacturing the same. The organic light emitting display device includes a mirror wall which is disposed on a substrate such that the mirror wall surrounds a light emitting area of each sub-pixel where a light emitting element is disposed, thus preventing total reflection of light produced in the light emitting element and improving optical efficiency by reflecting light travelling toward a non-emitting area to be directed to the light emitting area.
Abstract:
Disclosed are an organic light emitting display device and a method of manufacturing the same. In the organic light emitting display, an anode connected to a thin film transistor and a bank disposed along the edge of the anode are simultaneously formed through one mask process, and a partition is formed to cover the side surface of the anode, thereby preventing damage to a pad cover electrode by an etching solution or etching gas of the anode without any separate pad protective film.
Abstract:
An organic light emitting display device and a method of manufacturing the same are provided that may reduce the resistance of a second electrode and may prevent corrosion and metal migration of a pad electrode without adding a separate mask process, or while reducing the number of mask processes. In the organic light emitting display device, an auxiliary line is connected to a second electrode through an auxiliary electrode, which is provided in the same layer as a first electrode, and a pad cover electrode is configured to cover an upper surface and a side surface of a pad connection electrode so as to prevent the pad connection electrode connected to a pad from being exposed outward.
Abstract:
An array substrate for a liquid crystal display device includes a substrate; a semiconductor layer on the substrate; a gate electrode on the semiconductor layer; source and drain electrodes that are on and contact the semiconductor layer; and an oxide layer that corresponds to the semiconductor layer and is on the gate electrode.
Abstract:
An organic light emitting display device and a method of manufacturing the same are provided that may reduce the resistance of a second electrode and may prevent corrosion and metal migration of a pad electrode without adding a separate mask process, or while reducing the number of mask processes. In the organic light emitting display device, an auxiliary line is connected to a second electrode through an auxiliary electrode, which is provided in the same layer as a first electrode, and a pad cover electrode is configured to cover an upper surface and a side surface of a pad connection electrode so as to prevent the pad connection electrode connected to a pad from being exposed outward.
Abstract:
Disclosed is a display device which may achieve process simplification and cost reduction. The display device having touch sensors includes display pads arranged in a non-active area on a substrate and having a multilayer structure, an uppermost layer of the display pads is formed of a different material from conductive layers included in the touch sensors arranged on an encapsulation unit, and, thus, damage to the display pads during formation of the touch sensors may be prevented, process margin may be increased and high resolution may be implemented. Further, the touch sensors are arranged on the encapsulation unit without a separate attachment process and, thus, process simplification and cost reduction of the display device may be achieved.
Abstract:
Disclosed is a display device having touch sensors which may reduce parasitic capacitance and a method of manufacturing the same. The display device includes a plurality of touch sensing lines respectively arranged so as to traverse a plurality of common electrode blocks forming an electric field with pixel electrodes, a lower planarization layer having openings in regions overlapping drain electrodes of thin film transistors, an upper planarization layer arranged between one of the pixel electrodes and the common electrode blocks, and the touch sensing lines so as to cover a side surface of the lower planarization layer, and an upper protective film arranged between the pixel electrodes and the common electrode blocks, and, thus, parasitic capacitance generated between the touch sensing lines and the common electrode blocks may be reduced without reduction in liquid crystal capacitance and storage capacitance.
Abstract:
Disclosed are an organic light emitting display device to improve an aperture ratio, and a method of manufacturing the same. The organic light emitting display device includes a plurality of contact holes overlapping an anode of an organic light emitting element in each sub-pixel region, wherein conductive films connected through at least one of the contact holes are transparent, thus allowing regions, where the contact holes are formed, to be used as light emitting regions, thereby improving an aperture ratio.