Abstract:
A flexible display panel includes a glass substrate, a circuit layer disposed on the glass substrate and configured to drive a pixel, a light-emitting element layer disposed on the circuit layer, an encapsulation layer which covers the circuit layer and the light-emitting element layer, a polarizing plate disposed on the encapsulation layer, and a cover glass disposed on the polarizing plate, at least one of the glass substrate and the cover glass includes a buffer portion, the buffer portion includes an organic filler and glass, the glass of the buffer portion has a thickness less than or equal to a thickness of the glass substrate and includes a pattern of a specific shape, thus, rigidity of a folding portion in which the buffer portion is located can be increased due to the glass in the buffer portion.
Abstract:
A display panel includes a first display disposed on a first glass substrate; a second display disposed on a second glass substrate adjacent to the first glass substrate; and a first organic layer connecting the first glass substrate and the second glass substrate, wherein each of the first display and the second display includes a plurality of first gate lines disposed in a first direction, a plurality of first data lines disposed in a second direction crossing the first direction, and first subpixels defined by the plurality of first gate lines and the plurality of first data lines which cross each other, and wherein first wirings electrically connecting the first subpixels of the first display and the first subpixels of the second display are disposed on the first organic layer.
Abstract:
The present disclosure provides a display panel. The display panel may include a first substrate on which a main display area is disposed, at least one second substrate on which an auxiliary display area smaller than the main display area is disposed, and an organic film connecting the first substrate and the second substrate, wherein at least one second substrate includes a plurality of block substrates separated from each other, wherein the plurality of block substrates are connected by the organic film, and wherein each of the plurality of block substrates comprises pixels of the auxiliary display area.
Abstract:
An OLED display device is discussed which can include: a first substrate defined into an emission region and a non-emission region; a first electrode formed on the first substrate; a bank pattern configured to expose a part of the first electrode corresponding to the emission region; an organic emission layer formed on the exposed part of the first electrode corresponding to the emission region; a second electrode which includes a first conductive layer formed on the organic emission layer and a second conductive layer formed on the second conductive layer. The first conductive layer is formed from an alloy of magnesium (Mg) and silver (Ag), and the second conductive layer is formed from silver (Ag). Such an OLED display device allows the second electrode to include the first conductive layer and the second conductive layer. As such, a large-sized display device with low resistance and high transmittance can be realized.
Abstract:
Provided is a mother substrate comprising a glass substrate including a plurality of cutting lines, an organic film overlapping the plurality of cutting lines on the glass substrate, and a plurality of cells spaced apart from each other with each of the plurality of cutting lines therebetween on the glass substrate.
Abstract:
An organic light emitting diode display device according to an embodiment includes: a first substrate having a pixel region; a first electrode in the pixel region on the first substrate; an emitting layer on the first electrode; and a second electrode on the emitting layer, the second electrode including a metal layer having a thickness smaller than about 300 Å.