Abstract:
A refrigerator includes a cabinet including a refrigerating compartment and an evaporation chamber, a first door, a housing in the first door, an ice making room defining a cool air inflow hole and a cool air discharge hole, a chiller room defining a cool air discharge hole, a second door connected to the first door, a partition wall defining the ice making room, the chiller room, and a communication hole, a damper opening and closing the communication hole, a cool air supply duct connecting an outlet of the evaporation chamber and the cool air inflow hole to supply cool air of the evaporation chamber to the ice making room, and a cool air return duct having a first inlet connected to the cool air discharge hole of the ice making chamber and a second inlet connected to the cool air discharge hole of the chiller room.
Abstract:
A refrigerator and a method for controlling an automatic door thereof are disclosed. The refrigerator includes a magnet mounted to a door and a magnetic field sensor mounted to a main body, so as to detect whether the door is open or closed and a pressed amount of the door according to a change in distance between the magnetic field sensor and the magnet even without a direct contact with the door. This can make appearance of the refrigerator beautiful and prevent an occurrence of deformation, deterioration, wear, and the like of a contact portion due to the contact with the door.
Abstract:
A refrigerator includes a cabinet including a refrigerating compartment and an evaporation chamber, a first door, a housing in the first door, an ice making room defining a cool air inflow hole and a cool air discharge hole, a chiller room defining a cool air discharge hole, a second door connected to the first door, a partition wall defining the ice making room, the chiller room, and a communication hole, a damper opening and closing the communication hole, a cool air supply duct connecting an outlet of the evaporation chamber and the cool air inflow hole to supply cool air of the evaporation chamber to the ice making room, and a cool air return duct having a first inlet connected to the cool air discharge hole of the ice making chamber and a second inlet connected to the cool air discharge hole of the chiller room.
Abstract:
A refrigerator includes: a cabinet in which a refrigerating compartment is provided; a first door connected to the cabinet to open and close the refrigerating compartment and having an opening; a housing provided in the first door and accessible through the opening therein; an ice making room provided in the housing; a storage room that is provided below the ice making room and maintained at a temperature different from that of the refrigerating compartment; a guide duct provided below the ice making room to guide discharge of ice; a second door connected to the first door; a dispenser disposed on a front surface of the second door; and a discharge duct provided in the second door, wherein, when the second door is closed, the guide duct communicates with the discharge duct, and ice made in the ice making room is discharged to the dispenser.
Abstract:
A refrigerator and a method for controlling an automatic door thereof are disclosed. The refrigerator includes a magnet mounted to a door and a magnetic field sensor mounted to a main body, so as to detect whether the door is open or closed and a pressed amount of the door according to a change in distance between the magnetic field sensor and the magnet even without a direct contact with the door. This can make appearance of the refrigerator beautiful and prevent an occurrence of deformation, deterioration, wear, and the like of a contact portion due to the contact with the door.
Abstract:
The present invention relates to a refrigerator and, more specifically, a refrigerator which enables a user to easily open a door thereof. The present invention relates to a refrigerator and method for controlling the same, which can prevent a door thereof from opening by itself due to a malfunction. According to an embodiment of the present invention, a refrigerator may comprise: a cabinet having a storage chamber; a door for closing or opening the storage chamber; a sensor provided to sense whether a user is within or out of a sensing distance, to enable discrimination between sensing-on and sensing-off; a door opening device provided to automatically open the door; and a control unit for determining an operation condition of the door opening device on the basis of a time interval from the sensing-on to the sensing-off and a duration for which the sensing-on continues in the sensor, so as to control the operation of the door opening device.
Abstract:
A refrigerator includes a cabinet, a door, an ice making room, a cool air supply duct connecting the evaporation chamber to the ice making room, an ice maker, a cool air guide duct that guides cool air from the ice making room toward the ice maker, and an ice bin below the ice maker to store ice. The ice maker includes an ice tray including cool air guide ribs, and an ice separating guide covering a front surface of the ice tray and a portion of a top surface thereof in which the cool air guide ribs extend from one side of the ice tray toward the other side and are spaced apart from a front surface of a tray body toward a rear surface, and bottom parts of the cool air guide ribs are spaced apart from a bottom part of the cool air guide duct.
Abstract:
A refrigerator includes a main body defining a storage compartment, a door, an ice making device, a water tank disposed for supplying water into the ice making device, and an ice bin to receive and store ice pieces made in the ice making device. The ice making device includes an ice making tray having ice making chambers configured to be filled with water for making the ice pieces, and an ejector extending from an upper central portion of the ice making tray in a longitudinal direction of the ice making tray to pass through both ends of the ice making tray. The ejector is configured to be maintained in a fixed state during water supply, ice making, and ice separation processes, and the ice making tray is configured to rotate at an angle of about 360° in one direction with respect to the ejector.
Abstract:
A refrigerator and a method for controlling an automatic door thereof are disclosed. The refrigerator includes a magnet mounted to a door and a magnetic field sensor mounted to a main body, so as to detect whether the door is open or closed and a pressed amount of the door according to a change in distance between the magnetic field sensor and the magnet even without a direct contact with the door. This can make appearance of the refrigerator beautiful and prevent an occurrence of deformation, deterioration, wear, and the like of a contact portion due to the contact with the door.
Abstract:
A refrigerator and a method for controlling an automatic door thereof are disclosed. The refrigerator includes a magnet mounted to a door and a magnetic field sensor mounted to a main body, so as to detect whether the door is open or closed and a pressed amount of the door according to a change in distance between the magnetic field sensor and the magnet even without a direct contact with the door. This can make appearance of the refrigerator beautiful and prevent an occurrence of deformation, deterioration, wear, and the like of a contact portion due to the contact with the door.