Abstract:
The present application provides for various embodiments of methods for the analysis of high resolution melt (HRM) curve data; where statistical assay variations in melt curve data may result from system noise in an analysis system. Such system noise may arise from various sources, such as the thermal non-uniformity of a thermocycler block in a thermal cycler apparatus, a detection system, etc. Additionally, various methods for the analysis of HRM curve data may provide an identification of a sample without the need for a user inputted information.
Abstract:
Systems and methods of providing run-time quality control and monitoring of a single or multiple sequencing runs are provided herein. In some embodiments, the run-time system includes or is in communication with a processor capable of determining various types of run-time information relating to the quality, progress, etc. of various sequencing runs. In some embodiments, the system can also be in communication with a user interface, for example, a GUI, capable of representing and communicating various types of information to a user regarding the quality of the individual or multiple runs, the functioning of the instrument, an error event, etc. Additionally, the system can capable of receiving actionable information from a user via the GUI thereby allowing the user to terminate or repeat various sequencing steps in a particular run, terminate a entire run, terminate all runs, allow a run to proceed, etc.
Abstract:
A method includes exposing template polynucleotide strands, sequencing primers, and polymerase to flows of nucleotide species; obtaining a series of measured intensity values and randomly selecting a training subset therefrom; generating series of base calls using a base caller and aligning the series of base calls to a reference genome or sequence using an aligner; determining intensity value thresholds and parameters of a linear transformation corresponding to different homopolymer lengths and nucleotide species; generating series of base calls corresponding to the series of measured intensity values using at least some of the parameters of a linear transformation; and recalibrating the series of base calls corresponding to the plurality of series of measured intensity values using at least some of the intensity value thresholds.
Abstract:
The present teachings comprise systems and methods for calibrating the background or baseline signal in a PCR or other reaction. The background signal derived from detected emissions of sample wells can be subjected to a normalized statistical metric, and be compared to a threshold or other standard to discard outlier cycles or other extraneous data. According to various embodiments, a relative standard deviation (relativeSTD) for the background component can be generated by dividing the standard deviation by the median of differences across all wells, where the difference is defined as the difference between maximum and minimum pixel values of a well. The relativeSTD as a metric is not sensitive to machine-dependent variations in absolute signal output that can be caused by different gain settings, different LED draw currents, different optical paths, or other instrumental variations. More accurate background characterization can be achieved.
Abstract:
Systems and methods of providing run-time quality control and monitoring of a single or multiple sequencing runs are provided herein. In some embodiments, the run-time system includes or is in communication with a processor capable of determining various types of run-time information relating to the quality, progress, etc. of various sequencing runs. In some embodiments, the system can also be in communication with a user interface, for example, a GUI, capable of representing and communicating various types of information to a user regarding the quality of the individual or multiple runs, the functioning of the instrument, an error event, etc. Additionally, the system can capable of receiving actionable information from a user via the GUI thereby allowing the user to terminate or repeat various sequencing steps in a particular run, terminate a entire run, terminate all runs, allow a run to proceed, etc.
Abstract:
Systems and methods of providing run-time quality control and monitoring of a single or multiple sequencing runs are provided herein. In some embodiments, the run-time system includes or is in communication with a processor capable of determining various types of run-time information relating to the quality, progress, etc. of various sequencing runs. In some embodiments, the system can also be in communication with a user interface, for example, a GUI, capable of representing and communicating various types of information to a user regarding the quality of the individual or multiple runs, the functioning of the instrument, an error event, etc. Additionally, the system can capable of receiving actionable information from a user via the GUI thereby allowing the user to terminate or repeat various sequencing steps in a particular run, terminate a entire run, terminate all runs, allow a run to proceed, etc.
Abstract:
The present application provides for various embodiments of methods for the analysis of high resolution melt (HRM) curve data; where statistical assay variations in melt curve data may result from system noise in an analysis system. Such system noise may arise from various sources, such as the thermal non-uniformity of a thermocycler block in a thermal cycler apparatus, a detection system, etc. Additionally, various methods for the analysis of HRM curve data may provide an identification of a sample without the need for a user inputted information.
Abstract:
A method includes exposing template polynucleotide strands, sequencing primers, and polymerase to flows of nucleotide species; obtaining a series of measured intensity values and randomly selecting a training subset therefrom; generating series of base calls using a base caller and aligning the series of base calls to a reference genome or sequence using an aligner; determining intensity value thresholds and parameters of a linear transformation corresponding to different homopolymer lengths and nucleotide species; generating series of base calls corresponding to the series of measured intensity values using at least some of the parameters of a linear transformation; and recalibrating the series of base calls corresponding to the plurality of series of measured intensity values using at least some of the intensity value thresholds.