Abstract:
A system and method for testing one or more wireless data packet signal transceiver devices under test (DUTs). Incoming data packets from a DUT are monitored to discern between data packets transmitted as part of a DUT calibration cycle or initial data packets being transmitted as the DUT transmitter circuitry settles at its new settings (e.g., transmit signal frequency or power), and later data packets transmitted following completion of the DUT calibration cycle or settling of the DUT transmitter circuitry. Following identification of these later data packets, the tester is so notified and begins the test procedure, e.g., capturing the data packets for analysis. Meanwhile, the tester has been allowed to remain in active use for other test purposes during DUT calibration cycles and settling intervals, thereby increasing testing efficiency and reducing overall test time.
Abstract:
Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) including communicating via each one of multiple available signal channels. Data packets exchanged between a tester and DUT as a normal part of a communication link initiation sequence are exchanged in such a manner that the tester transmits via all available channels simultaneously, thereby ensuring that a properly working DUT will always transmit in response. For example, in the case of a Bluetooth low energy transceiver, advertisement, scan request and scan response data packets can be used in such manner.
Abstract:
Method and system for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) by monitoring RF data packet signals between a tester and a DUT at a low network media layer, such as the physical (PHY) layer in accordance with the Open Systems Interconnection (OSI) reference model stack. By testing at a low layer, fewer signal conversions and data packet operations are required to perform various basic DUT tests, such as data packet throughput, DUT signal transmission performance, DUT packet type detection without packet decoding, validation of rate adaptation algorithms, and bit error rate (BER) testing.
Abstract:
System and method for facilitating testing of multiple data packet signal transceivers involving data-packet-signal replication and one or more status signals indicating successful and unsuccessful receptions of confirmation signals. Based upon the one or more status signals, one or more control signals cause the replicated data packet signals to be distributed to the devices under test (DUTs) such that, following successful and unsuccessful receptions of confirmation signals, corresponding replicated data packet signals are caused to fail to conform in part or to conform, respectively, with a predetermined data packet signal standard.
Abstract:
An example process determines a first error vector magnitude (EVM) of a signal output by a device under test (DUT). The process includes adding attenuation on a signal path between the DUT and a vector signal analyzer (VSA), where the attenuation is changeable: measuring, at the VSA, at least two second EVMs for different values of attenuation of the signal output by the DUT, where the at least two second EVMs are corrupted by noise from the VSA, and where each of the at least two second EVMs is based on two or more measurements; and determining the first EVM based on a linear relationship that is based on the first EVM, the at least two second EVMs, and a function based on the attenuation, where the first EVM is without at least some of the noise from the VSA.
Abstract:
Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) with multiple RF signal transmitters and RF signal receivers capable of concurrent operations. Multiple successions of test data packets from a tester to respective RF signal receivers of the DUT and multiple successions of responsive DUT data packets from respective RF signal transmitters of the DUT to the tester are conveyed such that multiple RF signal transmissions, multiple RF signal receptions, or RF signal transmission and reception are performed at least partially concurrently.
Abstract:
A method of testing, such as for a bit error rate (BER), of multiple data packet signal transceivers during which a tester and the data packet signal transceivers exchange sequences of test data packets and summary data packets. The tester provides the test data packets which contain respective pluralities of data bits with respective predetermined bit patterns. Responsive thereto, the data packet signal transceivers provide the summary data packets which contain respective summary data indicative of the number of data bits with the respective predetermined bit patterns that are correctly received by corresponding ones of the data packet signal transceivers.
Abstract:
Method for testing a radio frequency (RF) data packet signal transceiver device under test (DUT) including detecting transitions between RF data packet signal transmission and reception by the DUT, detecting transitions between different RF data packet signal transmission operations by the DUT, and detecting transitions between different RF data packet signal reception operations by the DUT.
Abstract:
System and method for controlling test flow of a radio frequency (RF) signal transceiver device under test (DUT) by inducing an interrupt via an internal signal interface or an external signal interface (with one example of the latter being a baseband signal interface for conveying audio signals). With exemplary embodiments, one or more DUT control signals are provided to or otherwise initiated within the DUT by inducing an interrupt, including inducement via use of the signal interface. With further exemplary embodiments, one or more test control signals are also provided to RF circuitry that responds by transmitting one or more RF receive signals for the DUT and receives from the DUT one or more RF transmit signals related to the one or more DUT control signals.
Abstract:
A method for testing a data packet signal transceiver device under test (DUT) that minimizes time lost due to waiting for respective power levels of data packets transmitted by the DUT to settle at the desired nominal value for transmit signal testing. In accordance with exemplary embodiments, signals transmitted by the DUT during receive signal testing, e.g., as acknowledgement data packets, are transmitted at the nominal value for transmit signal testing, thereby allowing sufficient time for individual data packet signal power levels to settle and remain consistent at the nominal value by the time receive signal testing is completed and transmit signal testing is to begin.