摘要:
Various embodiments provide an ability to abstract type resolution between multiple type systems. At least one type can be described in one or more programmatically accessible file(s). In some embodiments, an application using a different type system can programmatically access and resolve a type of the at least one type system without knowledge of a location of where a description of the type resides. Alternately or additionally, type descriptions contained in the one or more programmatically accessible file(s) can be analyzed and restructured into one or more new programmatically accessible file(s) based, at least in part, upon the type descriptions.
摘要:
Various embodiments provide an ability to abstract type resolution between multiple type systems. At least one type can be described in one or more programmatically accessible file(s). In some embodiments, an application using a different type system can programmatically access and resolve a type of the at least one type system without knowledge of a location of where a description of the type resides. Alternately or additionally, type descriptions contained in the one or more programmatically accessible file(s) can be analyzed and restructured into one or more new programmatically accessible file(s) based, at least in part, upon the type descriptions.
摘要:
Various embodiments provide an ability to abstract type resolution between multiple type systems. At least one type can be described in one or more programmatically accessible file(s). In some embodiments, an application using a different type system can programmatically access and resolve a type of the at least one type system without knowledge of a location of where a description of the type resides. Alternately or additionally, type descriptions contained in the one or more programmatically accessible file(s) can be analyzed and restructured into one or more new programmatically accessible file(s) based, at least in part, upon the type descriptions.
摘要:
Information about the operating system application programming interfaces is stored in a known format in a known location. This information fully describes the APIs exposed by the operating system and is stored in API metadata files. A language compiler or interpreter uses this API information to build a natural and familiar representation of the native system API in the target language. The language compiler or interpreter can read the API information at compile time and/or runtime. The metadata is used to allow an application to refer to named elements in the API. Projections are built that use the metadata to map named elements in the API to named elements in the target language, and to define wrappers that marshal data of those elements between the target representation and the native operating system representation.
摘要:
Information about the operating system application programming interfaces is stored in a known format in a known location. This information fully describes the APIs exposed by the operating system and is stored in API metadata files. A language compiler or interpreter uses this API information to build a natural and familiar representation of the native system API in the target language. The language compiler or interpreter can read the API information at compile time and/or runtime. The metadata is used to allow an application to refer to named elements in the API. Projections are built that use the metadata to map named elements in the API to named elements in the target language, and to define wrappers that marshal data of those elements between the target representation and the native operating system representation.
摘要:
Native operating system application programming interfaces (API's) are described using metadata and such descriptions are stored in a standard file format in a known location. By storing API definitions using such metadata, other applications can readily identify and use the APIs. To create such API representations, during development, a developer describes the shape of the API, including (but not limited to) the classes, interfaces, methods, properties, events, parameters, structures and enumerated types defined by the API. This API description is processed by a tool which generates a machine-readable metadata file. The machine-readable metadata file contains the same information as the API description, however in a format designed to be machine read rather than human authored.
摘要:
An improved system and method for an extensible codec architecture for digital images is provided. Executable software code may be operably coupled to a codec manager for requesting imaging operations to be performed on a digital image. The codec manager may receive the request to perform an imaging operation on the digital image and may select an imaging component, such as a codec, from one or more imaging components registered in the computer system for performing an imaging operation on the digital image. An arbitration manager may include functionality for requesting enumeration of the operations an imaging component may perform on a particular digital image. One or more pixel format converters may then convert the pixel format in the digital image to a pixel format supported by an imaging component installed on the system.
摘要:
Described is the adding of padding to a content file (e.g., image and/or audiovisual file) for anticipated subsequent use such that the content file need not be re-encoded to add metadata and other data to it. For example, padding may be added to an image file directly after an image file directory, whereby the directory can grow as needed into the padded space. Metadata can likewise be added to the padding, e.g., from the opposite direction that the directory extends into the padding. The padding may be added on the first re-encoding of the file, reducing or eliminating the need for subsequent re-encoding. The padding also may be used to track dead space in the file, with adjacent regions of dead space coalesced into a single region of dead space.
摘要:
Various embodiments are disclosed relating to verification of hit testing. According to an example embodiment, a method may be provided. The example method may include associating each of a plurality of locations of an application display area with one of a plurality of visual elements, selecting one of the plurality of locations on the application display area, performing hit testing for the selected location to obtain an element ID for one of the plurality of visual elements for the selected location, and verifying that the element ID from the hit testing of the selected location matches the visual element associated with the selected location.
摘要:
Methods and systems for applying visual effects to active content, such as buttons, comboboxes, video, edit fields, etc., wherein interactivity of the active content are retained thereafter. Also, the present disclosure provides a mechanism for developers to build new visual effects and have them applied to active content.