Abstract:
An interaction display system applied in a mobile device is provided. The system has a camera unit configured to capture images of a scene; a motion detection unit configured to detect motions of the mobile device during capturing the images; and a processing unit coupled to the camera unit and the motion detection unit, configured to estimate a geometry of the scene according to the captured images and the detected motions.
Abstract:
A method of three-dimensional video encoding and decoding that adaptively incorporates camera parameters in the video bitstream according to a control flag is disclosed. The control flag is derived based on a combination of individual control flags associated with multiple depth-oriented coding tools. Another control flag can be incorporated in the video bitstream to indicate whether there is a need for the camera parameters for the current layer. In another embodiment, a first flag and a second flag are used to adaptively control the presence and location of camera parameters for each layer or each view in the video bitstream. The first flag indicates whether camera parameters for each layer or view are present in the video bitstream. The second flag indicates camera parameter location for each layer or view in the video bitstream.
Abstract:
Calibration methods for calibrating image capture devices of an around view monitoring (AVM) system mounted on vehicle are provided, the calibration method including: extracting local patterns from images captured by each image capture device, wherein each local pattern is respectively disposed at a position within the image capturing range of one of the image capture devices; acquiring an overhead-view (OHV) image from OHV point above vehicle, wherein the OHV image includes first patterns relative to the local patterns for the image capture devices; generating global patterns from the OHV image using the first patterns, each global pattern corresponding to one of the local patterns; matching the local patterns with the corresponding global patterns to determine camera parameters and transformation information corresponding thereto for each image capture device; and calibrating each image capture device using determined camera parameters and transformation information corresponding thereto so as to generate AVM image.
Abstract:
In one implementation, a method codes video pictures, in which each of the video pictures is partitioned into LCUs (largest coding units). The method operates by receiving a current LCU, partitioning the current LCU adaptively to result in multiple leaf CUs, determining whether a current leaf CU has at least one nonzero quantized transform coefficient according to both Prediction Mode (PredMode) and Coded Block Flag (CBF), and incorporating quantization parameter information for the current leaf CU in a video bitstream, if the current leaf CU has at least one nonzero quantized transform coefficient. If the current leaf CU has no nonzero quantized transform coefficient, the method excludes the quantization parameter information for the current leaf CU in the video bitstream.
Abstract:
A method and apparatus for a three-dimensional or multi-view video encoding or decoding system utilizing unified disparity vector derivation is disclosed. When a three-dimensional coding tool using a derived disparity vector (DV) is selected, embodiments according to the present invention will first obtain the derived DV from one or more neighboring blocks. If the derived DV is available, the selected three-dimensional coding tool is applied to the current block using the derived DV. If the derived DV is not available, the selected three-dimensional coding tool is applied to the current block using a default DV, where the default DV is set to point to an inter-view reference picture in a reference picture list of the current block.