Abstract:
Methods and systems for merging isolated networks. One method includes determining that a second network is located within a predetermined distance of a first network. The method also includes exchanging content between a first network core of the first network and a second network core of the second network over a side haul communication channel. The exchange of content results in a first base station transceiver of the first network being capable of communicating with first network components of the first network core and with mirrored instances of second network components of the second network core within the first network core. The method also includes controlling, with the first network core, communications through the first base station transceiver using the second content included in the mirrored instances of the second network components.
Abstract:
Methods and systems for merging isolated networks. One method includes determining that a second network is located within a predetermined distance of a first network. The method also includes exchanging content between a first network core of the first network and a second network core of the second network over a side haul communication channel. The exchange of content results in a first base station transceiver of the first network being capable of communicating with first network components of the first network core and with mirrored instances of second network components of the second network core within the first network core. The method also includes controlling, with the first network core, communications through the first base station transceiver using the second content included in the mirrored instances of the second network components.
Abstract:
Disclosed herein are methods and systems for scheduling transmission of uplink communication. One embodiment takes the form of a process carried out by a first-radio-access-network-(RAN) entity in a first RAN, where the first RAN has a first-RAN uplink that is time-synchronized with a second-RAN uplink of a second RAN. The first-RAN entity detects an uplink-scheduling event associated with a mobile radio, and the first-RAN entity also identifies a second-RAN-uplink-transmission time slot for the mobile radio. The first-RAN entity schedules the mobile radio to transmit first-RAN-uplink communication, which is associated with the detected uplink-scheduling event, during a first-RAN-uplink time slot that does not overlap the identified second-RAN-uplink-transmission time slot.
Abstract:
Methods and systems for connecting isolated networks. One method includes storing, in a database of a network core, information related to a first set of communication devices associated with a first radio access network and a second set of communication devices associated with a second radio access network. The method further includes communicating between the network core and a transceiver of the first radio access network via an interface. The method further includes communicating, via the interface, between the network core and a virtual transceiver that represents an actual transceiver of the second radio access network.
Abstract:
A method and apparatus for moving network equipment is provided herein. During operation, an optimal base station configuration will be determined. Currently-employed network equipment will be moved based on a determination if adequate coverage will be provided to users of the system.
Abstract:
A Long Term Evolution (LTE) Concentrator and Distributor system and method extends geographical coverage while minimizing Evolved Node B (eNB) deployments. The system and method use a distributed array of Wide Band Receiver Transmitter (WBRT) devices (i.e., RF Heads, RFH, including antennas) connected via wide-band links to a central standard LTE eNB through a novel LTE Concentrator-Distributor (LTE-CD) which is an uplink (smart optimal) concentrator and downlink simulcast distributor. The eNB downlink signal (baseband or modulated RF) is distributed in synchronization (simulcast) through the LTE-CD to all WBRTs for downlink simulcast transmission to all UEs in the coverage area. The WBRTs receive uplink signals from user equipment, UE, devices in a coverage area, send the uplink signals (baseband or modulated RF) to the LTE-CD which optimally combines all received signals into one best uplink signal that is sent (in baseband or modulated RF) to the eNB.
Abstract:
Methods and systems for connecting isolated networks. One method includes storing, in a database of a network core, information related to a first set of communication devices associated with a first radio access network and a second set of communication devices associated with a second radio access network. The method further includes communicating between the network core and a transceiver of the first radio access network via an interface. The method further includes communicating, via the interface, between the network core and a virtual transceiver that represents an actual transceiver of the second radio access network.
Abstract:
A method and apparatus for moving network equipment is provided herein. During operation, an optimal base station configuration will be determined. Currently-employed network equipment will be moved based on a determination if adequate coverage will be provided to users of the system.