摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
Protective coating systems for gas turbine engine applications and methods for fabricating such protective coating systems are provided. An exemplary protective coating system comprises an aluminide-comprising bond coating disposed on a substrate, a thermal barrier coating overlying the aluminide-comprising bond coating, and a silicate layer interposed between the thermal barrier coating and the aluminide-comprising bond coating.
摘要:
Protective coating systems for gas turbine engine applications and methods for fabricating such protective coating systems are provided. An exemplary method of fabricating a protective coating system on a substrate comprises forming a bond coating on the substrate, forming a silicate layer on the bond coating, forming a thermal barrier coating overlying the silicate layer, and heating the thermal barrier coating.
摘要:
Protective coating systems for gas turbine engine applications and methods for fabricating such protective coating systems are provided. An exemplary method of fabricating a protective coating system on a substrate comprises forming a bond coating on the substrate, forming a silicate layer on the bond coating, forming a thermal barrier coating overlying the silicate layer, and heating the thermal barrier coating.