摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
A turbine engine component includes an electron beam-physical vapor deposition thermal barrier coating covering at least a portion of a substrate. The thermal barrier coating includes an inner layer having a columnar-grained microstructure with inter-columnar gap porosity. The inner layer includes a stabilized ceramic material. The thermal barrier coating also includes a substantially non-porous outer layer, covering the inner layer and including the stabilized ceramic material. The outer layer is deposited with continuous line-of-sight exposure to the vapor source under oxygen deficient conditions. The outer layer may further comprise a dopant oxide that is more readily reducible than the stabilized ceramic material. During deposition, the outer layer may also have an oxygen deficient stoichiometry with respect to the inner layer. Oxygen stoichiometry in the outer layer may be restored by exposure of the coated component to an oxidizing environment.
摘要:
A method for coating a polymeric or composite component surface with a wear and erosion resistance metal layer includes the step of cold gas-dynamic spraying a powder mixture onto the polymeric or composite component surface to form the wear and erosion resistance metal layer. The mixture may include at least one metal powder and at least one hard particle powder.
摘要:
The present invention provides a composition that includes a rhenium-based alloy and a solid film lubricant. The rhenium-based alloy comprises an alloying substance including at least one constituent having a stronger affinity to oxygen than does Re when exposed to an atmosphere at a temperature of at least about 285° C.