Abstract:
Systems, devices, and methods for performing respiratory-based cardiac remodeling pacing therapy are described in this disclosure. A patent's respiration may be monitored, and the lower pacing limit for the cardiac remodeling pacing and support pacing therapy delivered to a patient may be adjusted based on the monitored respiration to achieve or restore respiratory sinus arrhythmia.
Abstract:
Patient activity or inactivity may be determined based, at least in part, on a movement signal representative, or indicative, of movement of a patient. When the patient is determined to be inactive based the movement signal monitored over a moving time window, cardiac remodeling pacing may be delivered to the patient.
Abstract:
An example medical device system includes therapy delivery circuitry configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient via electrodes communicatively coupled to the therapy delivery circuitry. The ATP therapy includes one or more ATP trains. The medical device system also includes processing circuitry configured determine a first propagation time based on a comparison of features in a local electrogram and a far-field electrogram, such as the time from a fiducial point in the local electrogram and QRS onset in the far-field electrogram. The processing circuitry is also configured to determine, based on the first propagation time, a number of pulses to achieve a second propagation time and control the therapy delivery circuitry to deliver the ATP train of at least the number of pulses.
Abstract:
A medical device comprises therapy delivery circuitry and processing circuitry. The therapy delivery circuitry is configured to deliver anti-tachycardia pacing (ATP) therapy to a heart of a patient. The ATP therapy includes one or more pulse trains and each of the one or more pulse trains includes a plurality of pacing pulses. The processing circuitry is configured to, for at least one of the plurality of pacing pulses of at least one of the one or more pulse trains, determine at least one latency metric of an evoked response of the heart to the pacing pulse. The processing circuitry is further configured to modify the ATP therapy based on the at least one latency metric.
Abstract:
A medical device performs a method for computing an estimate of a physiological variable. The method includes sensing a physiological signal and measuring an event of the physiological signal. The device initializes a value of a long-term metric of the event measurement, wherein the long-term metric corresponds to a time interval correlated to a response time of the physiological variable to changes in the event. The estimate of the long-term metric is updated in a memory of the medical device using a previous long-term metric and a current measurement of the event. The device detects a need for computing the physiological variable and computes an estimate of the physiological variable using the updated long-term metric.
Abstract:
A method for sensing far-field R-waves in a leadless, intracardiac pacemaker implanted in an atrium of a patient's heart may involve sensing an electrical signal generated by the heart with two electrodes and a first sensing channel and/or a second sensing channel of the pacemaker, comparing a first timing marker from the first sensing channel with a second timing marker from the second sensing channel, and either determining that the sensed signal is a P-wave, if the first and second timing markers indicate that the sensed signal was sensed by the first and second sensing channels within a predetermined threshold of time from one another, or determining that the sensed signal is a far-field R-wave, if the sensed signal is sensed by the second sensing channel and not sensed by the first sensing channel.
Abstract:
Techniques for determining paced cardiac depolarization waveform morphological templates are described. For example, an implantable medical device (IMD) may sense a cardiac electrogram of a heart, identify cardiac depolarizations within the cardiac electrogram, and determine that the cardiac depolarizations are paced cardiac depolarizations resulting from delivery of a pacing pulse to the heart by another IMD without detecting the pacing pulse and without communicating with the other IMD. The IMD may identify paced cardiac depolarization waveforms of the paced cardiac depolarizations, determine a paced cardiac depolarization waveform morphological template based on the identified paced cardiac depolarization waveforms, determine a normal cardiac depolarization waveform morphological template based on the paced cardiac depolarization waveform morphological template, and compare the normal cardiac depolarization waveform morphological template to subsequent cardiac depolarization waveforms. The IMD may detect a cardiac tachyarrhythmia based on the above comparison.
Abstract:
A medical device performs a method for computing an estimate of a physiological variable. The method includes sensing a physiological signal and measuring an event of the physiological signal. The device initializes a value of a long-term metric of the event measurement, wherein the long-term metric corresponds to a time interval correlated to a response time of the physiological variable to changes in the event. The estimate of the long-term metric is updated in a memory of the medical device using a previous long-term metric and a current measurement of the event. The device detects a need for computing the physiological variable and computes an estimate of the physiological variable using the updated long-term metric.
Abstract:
A method for sensing far-field R-waves in a leadless, intracardiac pacemaker implanted in an atrium of a patient's heart may involve sensing an electrical signal generated by the heart with two electrodes and a first sensing channel and/or a second sensing channel of the pacemaker, comparing a first timing marker from the first sensing channel with a second timing marker from the second sensing channel, and either determining that the sensed signal is a P-wave, if the first and second timing markers indicate that the sensed signal was sensed by the first and second sensing channels within a predetermined threshold of time from one another, or determining that the sensed signal is a far-field R-wave, if the sensed signal is sensed by the second sensing channel and not sensed by the first sensing channel.
Abstract:
A medical device and method for detecting and classifying cardiac rhythm episodes that includes a sensing module to sense cardiac events; a therapy delivery module, and a detection module configured to determine intervals between the sensed cardiac events, determine a predetermined cardiac episode is occurring in response to the determined intervals, determine whether a ventricular rate is greater than an atrial rate in response to the determined intervals, determine whether oversensing is occurring in response to the ventricular rate being greater than the atrial rate, adjust the determined intervals in response to oversensing occurring to generate an adjusted ventricular rate, determine whether the cardiac episode is occurring in response to the adjusted ventricular rate, perform a supraventricular tachycardia (SVT) discrimination analysis in response to the cardiac episode occurring in response to the adjusted ventricular rate, and control the therapy delivery module to deliver therapy in response to the SVT discrimination analysis.