Abstract:
A communication network includes multiple nodes, which are arranged in groups such that the nodes in each group are interconnected in a bipartite topology and the groups are interconnected in a mesh topology. The nodes are configured to convey traffic between source hosts and respective destination hosts by routing packets among the nodes on paths that do not traverse any intermediate hosts other than the source and destination hosts.
Abstract:
In one embodiment, an in-network compute resource assignment system includes a network device to receive a request to select resources to perform a processing job, wherein the request includes at least one resource requirement of the processing job, and end point devices assigned to perform the processing job, a memory to store a state of in-network compute-resources indicating resource usage of the in-network compute-resources by other processing jobs, and a processor to manage the stored state, and responsively to receiving the request, selecting ones of the in-network compute-resources to perform the processing job based on: (a) a network topology of a network including the in-network compute-resources; (b) the state of the in-network compute-resources; and (c) the at least one resource requirement of the processing job.
Abstract:
A method for communication includes partitioning local links in a subnetwork of a packet data network into at least first and second groups. For each local link that connects a first upper-tier switch to a first lower-tier switch in the subnetwork, a corresponding detour route is defined, passing through a first local link belonging to the first group from the first upper-tier switch to a second lower-tier switch, and from the second lower-tier switch over a second local link to a second upper-tier switch, and from the second upper-tier switch over a third local link belonging to the second group to the first lower-tier switch. Upon a failure of the local link connecting the first upper-tier switch to the first lower-tier switch, data packets arriving from the network at the first upper-tier switch are rerouted to pass via the corresponding detour route to the first lower-tier switch.
Abstract:
A method for communication includes partitioning local links in a subnetwork of a packet data network into at least first and second groups. For each local link that connects a first upper-tier switch to a first lower-tier switch in the subnetwork, a corresponding detour route is defined, passing through a first local link belonging to the first group from the first upper-tier switch to a second lower-tier switch, and from the second lower-tier switch over a second local link to a second upper-tier switch, and from the second upper-tier switch over a third local link belonging to the second group to the first lower-tier switch. Upon a failure of the local link connecting the first upper-tier switch to the first lower-tier switch, data packets arriving from the network at the first upper-tier switch are rerouted to pass via the corresponding detour route to the first lower-tier switch.
Abstract:
A communication network includes multiple nodes, which are arranged in groups such that the nodes in each group are interconnected in a bipartite topology and the groups are interconnected in a mesh topology. The nodes are configured to convey traffic between source hosts and respective destination hosts by routing packets among the nodes on paths that do not traverse any intermediate hosts other than the source and destination hosts.