摘要:
A microprocessor (5) including a plurality of write buffers (30) of varying sizes is disclosed. The varying sizes of the write buffers (30) allow for each write transaction from the core of the microprocessor (5) to be assigned to the most efficient write buffer size. Each write buffer (30) also includes sequential control logic (50) that issues a status code indicating the extent to which its write buffer (30) is filled; the control logic (50) advances to a more full state responsive to receiving a new data transaction from the internal bus, and advances to a more empty state responsive to completing a write transaction to the external bus. Each write buffer (30) communicates data from an internal bus (PBUS) to an external bus (BBUS) in a manner that is synchronized in the control path, rather than in the data path. Clock domain translation circuitry (65) is included within timing control circuitry (62) to translate the control signal from one clock domain to another, thus ensuring that overlapping writes do not occur. Internal snoop control circuitry (71) is also provided, for controlling access to the write buffers (30) so that memory reads missing in on-chip cache may be performed to the write buffers (30), rather than to main memory (21), if the data remains resident therein. A read buffer (33) is also disclosed, and has a plurality of entries for receiving blocks of data from the external bus (BBUS); upon receipt of a block of data, the read buffer (33) indicates the presence of data therein to the core of the microprocessor (5) to initiate its retrieval for execution of an instruction.
摘要:
A time-based intelligence system provides robust storage, access, and processing of information on a mobile device. An automated mobile assistant system provides automated, proactive and anticipatory services for the user of the system. In an example, a customizable personal mobile device for communication and organization can include a core engine and a plurality of modules coupled to the core engine to perform a different one of a plurality of classes of functionality of the mobile device, where each said module includes a processing element and memory dedicated for use by said module.
摘要:
A customized personal mobile device for communication and organization comprises a core engine and a plurality of modules coupled to the core engine. Each of the modules is dedicated to perform a different one of a plurality of classes of functionality of the mobile device, where each said module includes a processing element and memory dedicated for use by said module. A time-based intelligence system provides robust storage, access, and processing of information on a mobile device.
摘要:
An automated mobile assistant system provides automated, proactive and anticipatory services for the user of the system. A scheduling system for a mobile device is described and can include a memory to store calendar events and a scheduler to automatically organize the events based on at least one of temporal, geographical, contextual availability, user-preference, past activities, usage pattern, proximity to other users or events, or combinations thereof. In an example, a customizable personal mobile device for communication and organization can include a core engine and a plurality of modules coupled to the core engine to perform a different one of a plurality of classes of functionality of the mobile device, where each said module includes a processing element and memory dedicated for use by said module. A time-based intelligence system provides robust storage, access, and processing of information on a mobile device.
摘要:
A microprocessor (5) including a clock domain translation circuit (50a) for communicating a digital signal from a high speed clock domain to a low speed clock domain is disclosed. The disclosed microprocessor (5) includes clock generation circuitry (20) which generates internal and bus clocks at different multiples of a system clock signal. The clock generation circuitry (20) includes a counter (60) that indicates, for a given frequency ratio, signals (REGION) indicating the current phase region of the faster clock (PCLK) relative to the slower clock (BCLK). The clock domain translation circuit (50a) includes a series of input registers (82, 84) in sequence, with the output of each as well as the input signal line (IN PCLK) coupled to inputs of a multiplexer (80). The multiplexer (80) selects either the input signal directly or the output of one of the registers for application to an output register (90), clocked by the slower clock signal (BCLK), depending upon the phase region of the faster clock (PCLK) relative to the slower clock (BCLK) for communication of that signal. As a result, the input digital signal is held for enough time to be properly clocked in, depending upon the phase region, thus enabling frequency ratios of non-integer values to be utilized in system operation.
摘要:
Improved Fourier transform processing systems for a data transmission system are disclosed. The improved Fourier transform processing systems efficiently performs Fourier transform signal processing. In addition, the improved Fourier transform processing can perform address transformations to better and more efficiently use a memory system for in-place processing. The address transformations are provided by a generalized address translation algorithm that works for any size Fourier transform, in any radix, and with various memory architectures. The processing system can also be pipelined. The invention is particularly well suited for performing in-place processing in a data transmission system.
摘要:
Improved Fourier transform processing systems for a data transmission system are disclosed. The improved Fourier transform processing systems efficiently performs Fourier transform signal processing. In addition, the improved Fourier transform processing can perform address transformations to better and more efficiently use a memory system for in-place processing. The address transformations are provided by a generalized address translation algorithm that works for any size Fourier transform, in any radix, and with various memory architectures. The processing system can also be pipelined. The invention is particularly well suited for performing in-place processing in a data transmission system.
摘要:
The present invention provides a method for transferring groups of data between a microprocessor cache memory (114) and an external memory (105) across a data bus (Bbus). Each group of data includes as many bits of data as the width of the bus (Bubs) with the total amount of data transferred filling a line in the cache memory (114). The bus interface unit (112) of the microprocessor (110) initiates a burst read by starting a read request, asserting the address strobe bit and sending the initial requested address on the external bus address bits of the microprocessor (110). The external system will then respond by asserting a burst ready signal, followed by the data bits residing in the appropriate address position. The particular addresses for this data is selected according to the current burst mode, which may be high performance, low power or compatible with a previously known burst mode. Subsequent groups of data are then sent in subsequent cycles according to the prescribed order of the burst mode up to n (=B/b) transfers. In a high performance mode the first group of bytes requested are always returned first. The next transfer will supply the necessary data that will satisfy the next level of data size hierarchy. Thereafter, transfer order follows an increasing wrap-around order. A low power mode includes an initial data order similar to the high performance mode with the additional limitation that only one address bit changes for each sequential data group. A burst write is performed similarly.
摘要:
The parallel antifuse scheme may be applied to a field programmable gate array architecture (10) having a logic module (16) with an output coupled to an output track (34, 54, 114, 144, 178, 198) coupled via a cross antifuse (38, 58, 116, 184, 208) to an connecting track (36, 56, 64, 118, 154, 182, 205, 206). The connecting track is further coupled via at least one cross antifuse (44, 46, 72, 74, 120, 122, 160, 162, 190, 218, 220) to at least one input track (40, 42, 68, 70, 188, 214, 216) coupled to an input of at least one logic module. The circuit includes a compensation track (124, 150, 180, 200) running generally in parallel with the output track and at least one parallel antifuse (125, 158, 186, 212) programmably coupling the compensation track (124, 150, 180, 200) and the connecting track. One or more controllable switch (130, 152, 174, 176, 194, 196), such as a pass transistor, is coupled between the output track and the compensation track.
摘要:
A logic module for use in gate arrays and the like includes five two input multiplexers 50, 52, 54, 56, 58. The module includes 10 data input terminals I1, I2, I3, I4, I5, I6, I7, I8, I9, I10. The first input terminals I1, I2 are connected to the data input terminals of multiplexer 50. Inputs I3, I4 and I5 are connected respectively to the select, the first data and second data inputs to multiplexer 52. Inputs I6, I7 are connected to the data inputs of multiplexer 54. Inputs I8, I9, I10 are connected to the first data, second data and select inputs to multiplexer 56. The output of multiplexer 52 is connected to the select input to multiplexers 50 and 54. The output of multiplexer 56 is connected to the select input to multiplexer 58 while the outputs of multiplexers 50 and 54 are respectively connected to the first and second data input to multiplexer 58. The output of multiplexer 58 comprises the logic circuit output O.