Abstract:
A system determines temperatures and relative humidity from a mobile platform. The system includes a mobile sensor that measures relative humidity and a second mobile sensor that measures temperatures. A processor processes the sensor data to determine temperatures at which quantities of air retaining water vapor may be cooled to cause a condensation. The temperatures may be linked to position data that identifies position in many weather conditions.
Abstract:
An optical instrument for measuring characteristics of a specimen comprises a light source and an axial reflective member spaced from the light source to define an optical axis for the instrument along a line between the light source and the reflective member. A non-axial reflector is positioned laterally of the reflective member and laterally of the optical axis to receive a beam reflected from the axial reflective member. The non-axial reflector is oriented to reflect the beam onto the specimen. The instrument also contains a segmented photosensor and a second non-axial reflector to receive the beam reflected from the specimen and reflect it onto the segmented photosensor. The photosensor is positioned in the instrument to receive the beam from the second non-axial reflector. A conductor connected to each segment of the photosensor is provided for carrying current to signal conditioning hardware used to compare the current from the segments of the photosensor to provide information concerning the specimen.
Abstract:
An optical instrument for measuring characteristics of a specimen comprising a light source to project a beam onto the surface of a specimen at a selected oblique angle of incidence .beta.. The instrument also contains a photosensor to receive the beam reflected from the specimen at the same angle .beta.. A conductor connected to the photosensor is provided for carrying current to signal conditioning hardware used to compare the current from two or more photosensors or, if present, from different segments of the same photosensor to provide information concerning the specimen. Photosensor means is also positioned facing the specimen on an optical axis located normal to the surface of the specimen and intermediate the incident and reflected beams from the light source to receive a beam reflected from the specimen normal to its surface, i.e., along the optical axis. Signals from the photosensors are fed to the signal conditioning hardware to measure the optical power and to compare signals for measuring characteristics of the surface, e.g., its reflectivity or reflectance and to locate its position and/or orientation with respect to the instrument.
Abstract:
A relative reflectivity photometry instrument is provided for measuring surface reflectance as a measure, for example, of surface roughness of a specimen. The instrument includes a housing or barrel having a source of light at one end and a pair of photosensors such as photodiodes at the other end, one of which is positioned to receive rays directly from the light source and the other of which is oriented in a different direction to receive light only after the rays from the light source have struck the specimen and are scattered back onto the second sensor. Typically, the light source is mounted at the top of a barrel with the photodiodes positioned at the lower end of the barrel. The photodiodes are provided with a central opening through which a portion of the bundle of rays passes onto the specimen and is thereafter reflected onto the photosensitive surface of the second diode. Circuitry is provided for amplifying and comparing the signals received the first and second photosensitive surfaces. The comparing circuit can comprise a divider circuit for establishing a ratio between the signals from the first and second photodiodes.