Abstract:
An object of the present invention is to provide a CNT yarn having excellent conductivity and strength, and a method for producing the same. The present invention provides a drawn yarn comprising carbon nanotubes and having a drawing rate of 10 to 50%.
Abstract:
An object of the present invention is to provide a CNT yarn having excellent conductivity and strength, and a method for producing the same. The present invention provides a drawn yarn comprising carbon nanotubes and having a drawing rate of 10 to 50%.
Abstract:
The purpose of the present disclosure is to provide a CNT fiber that is constituted of aligned carbon nanotubes (CNTs), is thin, has little irregularity in thickness, has excellent winding properties when undergoing coiling processing, and has superior conductivity. Provided is a CNT fiber constituted of carbon nanotubes (CNTs) having a thickness of 0.01 μm-3 mm, having a coefficient of variation for irregularity in thickness of 0.2 or less, having a distribution rate a for deviation from roundness of 40% or greater, and a distribution rate b of 70% or greater. Also provided is a method for manufacturing the CNT fiber.
Abstract:
The purpose of the present disclosure is to provide a CNT fiber that is constituted of aligned carbon nanotubes (CNTs), is thin, has little irregularity in thickness, has excellent winding properties when undergoing coiling processing, and has superior conductivity. Provided is a CNT fiber constituted of carbon nanotubes (CNTs) having a thickness of 0.01 μm-3 mm, having a coefficient of variation for irregularity in thickness of 0.2 or less, having a distribution rate a for deviation from roundness of 40% or greater, and a distribution rate b of 70% or greater. Also provided is a method for manufacturing the CNT fiber.
Abstract:
An object of the present invention is to provide a CNT yarn having excellent conductivity and strength, and a method for producing the same. The present invention provides a drawn yarn comprising carbon nanotubes and having a drawing rate of 10 to 50%.
Abstract:
A method for producing an aggregated thread structure includes (a) a process of dispersing carbon nanotube to a first solvent, which is water or a mixed solvent containing organic solvent and water, with a surfactant, to create a dispersion and (b) a process of injecting the dispersion, in which carbon nanotube is dispersed, to a condensing liquid, which is a second solvent that differs from the first solvent, to thereby aggregate and spin carbon nanotube. The aggregated thread structure containing carbon nanotube has: a bulk density of 0.5 g/cm3 or more; a weight reduction rate up to 450° C. of 50% or less; a G/D ratio for resonance Raman scattering measurement of 10 or more; and an electric conductivity of 50 S/cm or more.