Abstract:
To suppress the deterioration of signal quality in an optical signal, a LiDAR device comprises: a signal output means 20 for outputting a first electric signal in a first period, reducing the amplitude of the first electric signal outside the first period, and then outputting a second electric signal; a modulator 30 which outputs an optical signal modulated on the basis of the first electric signal or the second electric signal; and a control means 40 for applying, to the modulator 30, a bias voltage based on the optical signal modulated on the basis of the first electric signal.
Abstract:
Provided is a communication device that can deliver an improvement in the communication capacity of communication infrastructure with the quality of communication taken into consideration. A communication device includes an acquiring unit configured to acquire quality information of a communication line extending from a first communication device to a second communication device and including an optical communication line, an estimating unit configured to estimate the quality of communication of the second communication device and determine the required quality of communication of the second communication device based on the quality information, and a controlling unit configured to perform control on communication channels in the optical communication line so that the quality of communication satisfies the required quality of communication.
Abstract:
A distance-measuring apparatus (2000) generates transmission light by generating a distance measurement signal, and subjecting an optical carrier wave to quadrature modulation on the basis of the generated distance measurement signal. The distance-measuring apparatus (2001) outputs transmission light, and receives reflected light generated by reflecting the transmission light on an object (10) to be measured. The distance-measuring apparatus (2000) compares the received reflected light with reference light to compute a distance from the distance-measuring apparatus (2000) to the object (10) to be measured.
Abstract:
An optical modulation unit outputs an optical signal generated by binary-modulating an input light. Phase modulation areas are formed on an optical wave guide. A drive circuit includes a plurality of drivers outputting drive signals according to an input digital signal to the phase modulation areas. A determination circuit determines the driver to be activated among the plurality of the drivers based on information expressing a transmission rate. A driver control circuit activates the driver specified by a result of a determination of the determination circuit and cuts off power supply to the driver other than the activated driver. A switching circuit switches connections between the plurality of the drivers and the phase modulation areas. A switching control circuit that controls the switching circuit to cause the drive signals to be applied from the activated driver to the phase modulation areas.
Abstract:
Provided is a self-position estimation system including: a reference environment point cloud storage means for storing a reference environment point cloud for self-position estimation; a point cloud acquisition means for acquiring a short-distance point cloud in a wide field of view, and a long-distance point cloud farther away than the short-distance point cloud and in a narrow field of view; a rough estimation means for performing rough estimation on a self-position by registering the short-distance point cloud with respect to the reference environment point cloud; and a precision estimation means for performing precision estimation on the self-position by registering the long-distance point cloud with respect to the reference environment point cloud by using, as an initial condition, a rough estimation result by the rough estimation means.
Abstract:
A light irradiating means irradiates a plurality of lights emitted from a plurality of light sources to an area to be monitored. The light irradiating means irradiates at least one of the plurality of lights and at least another one of the plurality of lights to the area to be monitored with mutually different beam diameters. A light reception means receives reflected lights of the plurality of lights incident from the area to be monitored. A distance measuring means measures, for each of the plurality of lights, the distance to an object present in the area to be monitored based on the reflected lights. A feature extracting means extracts a feature of the object present in the area to be monitored based on results of measurement of the distance for the plurality of lights.
Abstract:
A distance measurement apparatus comprises a distance measurement optical signal generation part, a collimating part, a beam diameter change part, an emission direction control part, and a beam diameter change control part. The distance measurement optical signal generation part generates an optical signal for measuring the distance to a target. The collimating part collimates the optical signal. The beam diameter change part is able to change a beam diameter of the collimated light. The emission direction control part controls an emission destination of the collimated light with the diameter changed. The beam diameter change control part controls the changing of the beam diameter by the beam diameter change part according to the emission direction of an outgoing.
Abstract:
A reception device 20 is configured to include a separation means 21 and a plurality of optical reception means 22. Each optical reception means 22 further includes an optical/electrical conversion means 23, a reception coefficient computation means 24, and a band restoration means 25. The separation means 21 separates a multiplexed signal into which signals of respective channels to which spectral shaping that narrows bandwidth to less than or equal to a baud rate is applied as band narrowing filter processing on the transmission side, based on characteristics of a transmission line are multiplexed at spacings less than or equal to the baud rate. Each band restoration means 25 applies processing having inverse characteristics to those of the band narrowing filter processing to a reception signal, based on the band narrowing parameter acquired by the reception coefficient computation means 24 and thereby restores the band of the reception signal.
Abstract:
A digital optical receiver capable of adaptively correcting the linearity of an analog front end unit is provided. The digital optical receiver comprises: a photoelectric conversion unit that converts an optical signal into an analog electric signal and outputs the analog electric signal; an analog front end unit that converts the analog electric signal obtained from the photoelectric conversion unit into a digital electric signal and outputs the digital electric signal; a linearity correction unit that corrects the linearity of the digital electric signal obtained from the analog front end unit; a demodulation processing unit that demodulates a signal by using, as input, the digital electric signal obtained from the linearity correction unit; and a control unit that provides an offset signal to the analog electric signal outputted by the photoelectric conversion unit, obtains monitor information for the result of the provision of the offset signal, and controls the linearity correction unit so that the linearity correction unit corrects the linearity of the digital electric signal obtained from the analog front end unit on the basis of the monitor information.
Abstract:
It is impossible to compensate non-linearity in an optical transmitter during operations, therefore, an optical transmitter according to an exemplary aspect of the invention includes a selective addition means for adding a coefficient to digital data to be transmitted if the digital data being included in one of data intervals of predetermined number, the predetermined number being integer more than one, and for changing the coefficient with a period longer than the symbol period of the data transmitted by the optical transmitter; a data processing means for processing the digital data by using a parameter; a driving signal means for generating a driving signal from the digital data adjusted by the selective addition means and the data processing means; a modulating means for modulating light into lightwave signal by the driving signal; and a control means for receiving a monitor signal obtained by monitoring the lightwave signal having a frequency component determined by the period of changing the added coefficients, and for modifying the parameter of the data processing means in order for the monitor signal to reach an extremum.