Abstract:
A radiation protection device is disclosed in the embodiment of the present invention. The radiation protection device is used for a system which is configured to perform safety inspection of a cargo or a vehicle by a ray. The radiation protection device comprising: at least one container, and a radiation protection part disposed within the container. The radiation protection material may comprise at least one of concrete, sandstone, and water, or the radiation protection part may comprise a steel-lead protection wall or a concrete protection wall. With the radiation protection device according to the embodiment of the present invention, after the container is transported to the site, it can be directly put in place to be capable of shielding rays without needing operation or with only simple operation. The amount of on-site work, construction time, and construction cost are low.
Abstract:
The disclosure provides a method for measuring X-ray energy of an accelerator in an inspection system. the method comprises: building a database comprising correspondence between half-value layer (HVL) and energy under a predetermined condition; measuring HVL for X-rays of the accelerator in the inspection system on line under the same predetermined condition; and comparing the measured HVL with the HVLs in the database comprising correspondence between HVL and energy to determine the X-ray energy of the accelerator. The method is applicable to a large-scale container/vehicle inspection system for measurement of X-ray energy/HVL of the accelerator so as to acquire source state of the inspection system in real time.
Abstract:
Provided is a device of detecting a ray dose adaptable for coupling with a terminal, including: a housing, a scintillator and a light shielding layer. The housing has an accommodating space and a window, the accommodating space is in communication with the window; the scintillator is configured to receive a ray and convert a received ray into a visible light, the scintillator is located in the accommodating space, the scintillator covers the window, an outer surface of the scintillator includes a first outer surface and a second outer surface, and the first outer surface is adapted to a camera of the terminal; and the light shielding layer is configured to shield a visible light in an external environment from illuminating on the scintillator, the light shielding layer is arranged on the second outer surface of the scintillator.
Abstract:
Embodiments of the present application provide a detection method. The detection method includes: acquiring information of at least two first positions through which a particle passes before penetrating an object under detection, and information of at least two second positions through which the particle passes after penetrating the object under detection, wherein the object under detection is a metal product; reconstructing, based on the information of the at least two first positions, a first track before the particle penetrates the object under detection; reconstructing, based on the information of the at least two second positions, a second track after the particle penetrates the object under detection; processing the first track and the second track to obtain feature information of the object under detection; and determining, according to the feature information and preset feature information of an object of a target type, a detection result of the object under detection.