Abstract:
Systems and methods for analyzing the service and performance levels associated with virtual machines in a storage network environment for compliance with a resource capacity policy are provided. Component configuration and connectivity information from components in the network environment is collected without using host agents on the virtual machines. Access paths defining end-to-end access relationships between an application on a virtual machine and storage data objects associated with the virtual machine in the network environment are derived. Access paths comprise sequences of components configured to enable information flow between an application residing on a virtual machine and a data object on a respective storage device. Access path resource consumption is computed and virtual machines with resource consumptions that violate the resource capacity policy are identified.
Abstract:
Methods and systems for providing a framework for automated storage processes and flexible workflow are disclosed. The framework provides a user workflow design tool to create and/or customize workflow automation processes without needing to write software code. Additionally, the workflow design tool provides a mechanism that allows the workflow to make decisions, such as selecting storage resources.
Abstract:
Methods and systems for periodically analyzing and correcting storage load imbalances in a storage network environment including virtual machines are described. These methods and systems account for various resource types, logical access paths, and relationships among different storage environment components. Load balancing may be managed in terms of input/output (I/O) traffic and storage utilization. The aggregated information is stored, and may be used to identify and correct load imbalances in a virtual server environment in order to prevent primary congestion and bottlenecks.
Abstract:
Systems and methods for analyzing the service and performance levels associated with virtual machines in a storage network environment for compliance with a resource capacity policy are provided. Component configuration and connectivity information from components in the network environment is collected without using host agents on the virtual machines. Access paths defining end-to-end access relationships between an application on a virtual machine and storage data objects associated with the virtual machine in the network environment are derived. Access paths comprise sequences of components configured to enable information flow between an application residing on a virtual machine and a data object on a respective storage device. Access path resource consumption is computed and virtual machines with resource consumptions that violate the resource capacity policy are identified.
Abstract:
Methods and systems for providing a framework for automated storage processes and flexible workflow are disclosed. The framework provides a user workflow design tool to create and/or customize workflow automation processes without needing to write software code. Additionally, the workflow design tool provides a mechanism that allows the workflow to make decisions, such as selecting storage resources.
Abstract:
Methods and systems for periodically analyzing and correcting storage load imbalances in a storage network environment including virtual machines are described. These methods and systems account for various resource types, logical access paths, and relationships among different storage environment components. Load balancing may be managed in terms of input/output (I/O) traffic and storage utilization. The aggregated information is stored, and may be used to identify and correct load imbalances in a virtual server environment in order to prevent primary congestion and bottlenecks.