Abstract:
A distributed storage system may synchronously apply an Information Lifecycle Management (ILM) policy to objects at ingest. In one embodiment of synchronous ILM, three options are available for a user: balanced, strict, and dual commit. Dual commit refers to the behavior where one will always create two replicated copies in the same site and then apply ILM asynchronously. Strict refers to the behavior where the storage system attempts to apply the ILM policy synchronously on ingest, and if the storage system cannot the ingest of the object will fail. This ensures that the storage system can guarantee that ILM has been applied to recently ingested objects. Balanced refers to the behavior where the storage system attempts to apply ILM synchronously, but if the storage system cannot the storage system may fall-back to dual-commit.
Abstract:
A system and method for specifying the placement of and managing the placement of objects on a distributed networked grid. Some embodiments of the invention comprise a user interface for specifying rules for the placement of objects on the grid and an execution module that places objects on the grid based on the rules specified. Rules may comprise a matching criteria specification, which determines whether a rule applies to a particular object, and a placement specification, which directs the locations at which an object will be placed under the rule.
Abstract:
A storage management computing device obtains an information lifecycle management (ILM) policy. A data protection scheme to be applied at a storage node computing device level is determined and a plurality of storage node computing devices are identified based on an application of the ILM policy to metadata received from one of the storage node computing devices and associated with an object ingested by the one of the storage node computing devices. The one of the storage node computing devices is instructed to generate one or more copies of the object or fragments of the object according to the data protection scheme and to distribute the object copies or one of the object fragments to one or more other of the storage node computing devices to be stored by at least the one or more other storage node computing devices on one or more disk storage devices.
Abstract:
A storage management computing device obtains an information lifecycle management (ILM) policy based on a query from a storage node ingesting an object into a distributed storage system. A hierarchical data protection plan comprising protection schemes at different layers of the distributed storage system is determined. A data protection scheme to be applied at a storage node computing device level is determined and a plurality of storage node computing devices are identified based on the hierarchical data protection plan. The storage management computing device instructs the ingesting storage node to store the object into the distributed storage system according to the hierarchical data protection plan.
Abstract:
A system and method for specifying the placement of and managing the placement of objects on a distributed networked grid. Some embodiments of the invention comprise a user interface for specifying rules for the placement of objects on the grid and an execution module that places objects on the grid based on the rules specified. Rules may comprise a matching criteria specification, which determines whether a rule applies to a particular object, and a placement specification, which directs the locations at which an object will be placed under the rule.
Abstract:
A distributed storage system may synchronously apply an Information Lifecycle Management (ILM) policy to objects at ingest. In one embodiment of synchronous ILM, three options are available for a user: balanced, strict, and dual commit. Dual commit refers to the behavior where one will always create two replicated copies in the same site and then apply ILM asynchronously. Strict refers to the behavior where the storage system attempts to apply the ILM policy synchronously on ingest, and if the storage system cannot the ingest of the object will fail. This ensures that the storage system can guarantee that ILM has been applied to recently ingested objects. Balanced refers to the behavior where the storage system attempts to apply ILM synchronously, but if the storage system cannot the storage system may fall-back to dual-commit.
Abstract:
A storage management computing device obtains an information lifecycle management (ILM) policy. A data protection scheme to be applied at a storage node computing device level is determined and a plurality of storage node computing devices are identified based on an application of the ILM policy to metadata received from one of the storage node computing devices and associated with an object ingested by the one of the storage node computing devices. The one of the storage node computing devices is instructed to generate one or more copies of the object or fragments of the object according to the data protection scheme and to distribute the object copies or one of the object fragments to one or more other of the storage node computing devices to be stored by at least the one or more other storage node computing devices on one or more disk storage devices.
Abstract:
A method, non-transitory computer readable medium, and storage management computing device that obtains an information lifecycle management (ILM) policy. A data protection scheme to be applied at a storage node computing device level is determined and a plurality of storage node computing devices are identified based on an application of the ILM policy to metadata received from one of the storage node computing devices and associated with an object ingested by the one of the storage node computing devices. The one of the storage node computing devices is instructed to generate one or more copies of the object or fragments of the object according to the data protection scheme and to distribute the object copies or one of the object fragments to one or more other of the storage node computing devices to be stored by at least the one or more other storage node computing devices on one or more disk storage devices.
Abstract:
A storage management computing device obtains an information lifecycle management (ILM) policy. A data protection scheme to be applied at a storage node computing device level is determined and a plurality of storage node computing devices are identified based on an application of the ILM policy to metadata received from one of the storage node computing devices and associated with an object ingested by the one of the storage node computing devices. The one of the storage node computing devices is instructed to generate one or more copies of the object or fragments of the object according to the data protection scheme and to distribute the object copies or one of the object fragments to one or more other of the storage node computing devices to be stored by at least the one or more other storage node computing devices on one or more disk storage devices.
Abstract:
A storage management computing device obtains an information lifecycle management (ILM) policy. A data protection scheme to be applied at a storage node computing device level is determined and a plurality of storage node computing devices are identified based on an application of the ILM policy to metadata received from one of the storage node computing devices and associated with an object ingested by the one of the storage node computing devices. The one of the storage node computing devices is instructed to generate one or more copies of the object or fragments of the object according to the data protection scheme and to distribute the object copies or one of the object fragments to one or more other of the storage node computing devices to be stored by at least the one or more other storage node computing devices on one or more disk storage devices.