Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
One or more techniques and/or systems are provided for dynamically provisioning logical storage pools of storage devices for applications. For example, a logical storage pool, of one or more storage devices, may be constructed based upon a service level agreement for an application (e.g., an acceptable latency, an expected throughput, etc.). Real-time performance statistics of the logical storage pool may be collected and evaluated against the service level agreement to determine whether a storage device does not satisfy the service level agreement. For example, a latency of a storage device within the logical storage pool may increase overtime as log files and/or other data of the application increase. Accordingly, a new logical storage pool may be automatically and dynamically defined and provisioned for the application to replace the logical storage pool. The new logical storage pool may comprise storage devices expected to satisfy the storage level agreement.
Abstract:
Methods, non-transitory computer readable media, and computing apparatus that obtain hardware resource data for storage node computing devices and generate a hardware resource pool based on the hardware resource data. The hardware resource pool and a hardware allocation table are updated based on an allocation of a portion of the hardware resources to each of the storage virtual machines. A determination is made when utilization of at least one of the allocated portions of the hardware resources exceeds a threshold level for one of the storage virtual machines. The hardware resource pool and the hardware allocation table are updated to modify the one of the portions of the hardware resources allocated to the one storage virtual machine based on the determination. Additionally, the hardware resource pool and hardware allocation table are maintained to reflect the addition and removal or storage virtual machines as well as storage node computing devices.
Abstract:
This technology identifies one or more nodes with a failure, designates the identified one or more nodes as ineligible to service any I/O operation, and disables I/O ports of the identified one or more nodes. Another one or more nodes are selected to service any I/O operation of the identified one or more nodes based on a stored failover policy. Any of the I/O operations are directed to the selected another one or more nodes for servicing and then routing of any of the serviced I/O operations via a switch to the identified one or more nodes to execute any of the routed I/O operations with a storage device. An identification is made when the identified one or more nodes is repaired. The designation as ineligible is removed and one or more I/O ports of the identified one or more nodes are enabled when the repair is identified.