摘要:
A driving method for a display apparatus including a plurality of pixels arranged in matrix along a line direction and a column direction implements sequential driving in the column direction by inverting a polarity of a plurality of pixels arranged in the line direction. The method includes driving a plurality of pixels arranged in an odd line, and driving a plurality of pixels arranged in an even line and in a column different from a column of the plurality of driven pixels in the odd line.
摘要:
An input buffer chooses, in accordance with first control clocks, to output an input data signal or output a high-impedance signal. A master flip-flop chooses, in accordance with second control clocks, to output a data signal received from the input buffer or retain a currently output data signal. A master-slave switch chooses, in accordance with the second control clocks, to output a high-impedance signal or output a data signal received from the master flip-flop. A slave flip-flop chooses, in accordance with the second control clocks, to retain a currently output data signal or output a data signal received from the master-slave switch. A clock buffer inputs the second control clocks, and generates and outputs the first control clocks.
摘要:
A digital-to-analog converter circuit includes: a first subdecoder for receiving a first reference voltage group and selecting a reference voltage Vrk based upon an input digital signal; a second subdecoder for receiving a second reference voltage group and selecting a reference voltage Vr(k+1) based upon the input digital signal; a third subdecoder for receiving a third reference voltage group and selecting a reference voltage Vr(k+2) based upon the input digital signal; a fourth subdecoder for receiving the reference voltages that have been selected by respective ones of the first to third subdecoders, selecting two of these reference voltages (inclusive of selecting the same voltage redundantly) based upon an input digital signal, and outputting the selected two reference voltages; and an amplifier circuit for receiving the two reference voltages that have been selected by the fourth subdecoder and outputting a result of an operation applied to the two reference voltages.
摘要:
In a liquid crystal display device where each unit pixel p arranged on a liquid crystal panel 101A is constituted by a plurality of pixels p1, p2, and p3, the pixels p1, p2, and p3 are divided into sub-pixels p11 and p12, sub-pixels p21, and p22, and sub-pixels p31 and p32, respectively. The liquid crystal display device is provided with driver ICs 201 and 202 for driving the sub-pixels p11, p21, and p31, and the sub-pixels p12, p22, and p32 constituting the pixels so that different gradation-brightness value characteristics may be given. Due to this, multi-gradation display can be performed.
摘要:
A liquid crystal display is provided which has low power consumption, and which prevents horizontal stripes from occurring without the circuitry becoming more complex. When the write voltage polarity is inverted every plurality of lines, in the n line where the polarity is inverted, the rise in the drain line waveform dulls due to the charging of the drain line. In the n+1 line, because the drain line has been charged by the writing of the n line, waveform dullness does not occur. A difference between the write states in the two lines causes horizontal stripes. Consequently, the output enable signal is activated at the rise of the clock signal, and the gate line is activated after a predetermined time to start the writing. Therefore, writing is not performed during the period of waveform dullness, and the write state is the same across all scan lines.
摘要:
A test signal is supplied to a test switch provided between a D/A converter for selecting and outputting a gray scale voltage of the driving circuit and an amplifier for amplifying and supplying an output voltage at the D/A converter to set a test mode, and an output voltage of the D/A converter is directly measured by a measuring device through the test switch to measure an ON resistance of a gray scale voltage selection circuit of the D/A converter.
摘要:
A test signal is supplied to a test switch provided between a D/A converter for selecting and outputting a gray scale voltage of the driving circuit and an amplifier for amplifying and supplying an output voltage at the D/A converter to set a test mode, and an output voltage of the D/A converter is directly measured by a measuring device through the test switch to measure an ON resistance of a gray scale voltage selection circuit of the D/A converter.
摘要:
In a liquid crystal display device where each unit pixel p arranged on a liquid crystal panel 101A is constituted by a plurality of pixels p1, p2, and p3, the pixels p1, p2, and p3 are divided into sub-pixels p11 and p12, sub-pixels p21, and p22, and sub-pixels p31 and p32, respectively. The liquid crystal display device is provided with driver ICs 201 and 202 for driving the sub-pixels p11, p21, and p31, and the sub-pixels p12, p22, and p32 constituting the pixels so that different gradation-brightness value characteristics may be given. Due to this, multi-gradation display can be performed.
摘要:
A liquid crystal display is provided which has low power consumption, and which prevents horizontal stripes from occurring without the circuitry becoming more complex. When the write voltage polarity is inverted every plurality of lines, in the n line where the polarity is inverted, the rise in the drain line waveform dulls due to the charging of the drain line. In the n+1 line, because the drain line has been charged by the writing of the n line, waveform dullness does not occur. A difference between the write states in the two lines causes horizontal stripes. Consequently, the output enable signal is activated at the rise of the clock signal, and the gate line is activated after a predetermined time to start the writing. Therefore, writing is not performed during the period of waveform dullness, and the write state is the same across all scan lines.
摘要:
An active matrix-type liquid crystal display device which is capable of realizing a dot inversion driving by disposing H drivers on both sides of the liquid crystal panel, while using existing H driver circuits which output odd output data and even output data at opposite polarities to each other. The first and second H drivers, which output odd output data and even output data at opposite polarities to each other, are disposed facing each other on both sides of the liquid crystal panel, in order to realize an active matrix-type liquid crystal display device which is conducted by the dot inversion driving. Data electrodes of said liquid crystal display device are taken out for every two lines or every integer times of two lines and the thus taken out data lines are connected alternately to the first and second driver circuits.