Abstract:
A method and system disclosed herein can be used to determine relationships between objects, determining which of those relationships are significant for a specific action, and determining physical dependencies between the objects. The method and system can be used to perform actions consistent with integrity constraints, and therefore, performs the actions in the correct order with a reduced likelihood of errors. The method and system are highly beneficial in that they can significantly enhance content management and can be implemented without having to write new or edit existing applications. Also, existing content data and applications may be used without any changes. Accordingly, the method and system can be advantageously useful in deploying or otherwise pushing out new content to existing content systems.
Abstract:
Embodiments disclosed herein provide a high performance content delivery system in which versions of content are cached for servicing web site requests containing the same uniform resource locator (URL). When a page is cached, certain metadata is also stored along with the page. That metadata includes a description of what extra attributes, if any, must be consulted to determine what version of content to serve in response to a request. When a request is fielded, a cache reader consults this metadata at a primary cache address, then extracts the values of attributes, if any are specified, and uses them in conjunction with the URL to search for an appropriate response at a secondary cache address. These attributes may include HTTP request headers, cookies, query string, and session variables. If no entry exists at the secondary address, the request is forwarded to a page generator at the back-end.
Abstract:
A method and system of managing content at a network site can allow easier use by business users. A higher level of abstraction can be used to allow business users to create their own objects that may reference or contain other objects or records as managed by a content management system. Business users do not have to learn programming code in order to work those objects, which are content types. A graphical user interface (“GUI”) can be used to help the business users to create, modify, and delete content types. The GUI and the ability for business users to the create content types greatly shortens the time between receiving software to operate a network site and launching content at that network site.
Abstract:
A method and system disclosed herein can be used to determine relationships between objects, determining which of those relationships are significant for a specific action, and determining physical dependencies between the objects. The method and system can be used to perform actions consistent with integrity constraints, and therefore, performs the actions in the correct order with a reduced likelihood of errors. The method and system are highly beneficial in that they can significantly enhance content management and can be implemented without having to write new or edit existing applications. Also, existing content data and applications may be used without any changes. Accordingly, the method and system can be advantageously useful in deploying or otherwise pushing out new content to existing content systems.
Abstract:
Embodiments disclosed herein provide a high performance content delivery system in which versions of content are cached for servicing web site requests containing the same uniform resource locator (URL). When a page is cached, certain metadata is also stored along with the page. That metadata includes a description of what extra attributes, if any, must be consulted to determine what version of content to serve in response to a request. When a request is fielded, a cache reader consults this metadata at a primary cache address, then extracts the values of attributes, if any are specified, and uses them in conjunction with the URL to search for an appropriate response at a secondary cache address. These attributes may include HTTP request headers, cookies, query string, and session variables. If no entry exists at the secondary address, the request is forwarded to a page generator at the back-end.
Abstract:
Embodiments disclosed herein provide a high performance content delivery system in which versions of content are cached for servicing web site requests containing the same uniform resource locator (URL). When a page is cached, certain metadata is also stored along with the page. That metadata includes a description of what extra attributes, if any, must be consulted to determine what version of content to serve in response to a request. When a request is fielded, a cache reader consults this metadata at a primary cache address, then extracts the values of attributes, if any are specified, and uses them in conjunction with the URL to search for an appropriate response at a secondary cache address. These attributes may include HTTP request headers, cookies, query string, and session variables. If no entry exists at the secondary address, the request is forwarded to a page generator at the back-end.
Abstract:
Embodiments disclosed herein provide a high performance content delivery system in which versions of content are cached for servicing web site requests containing the same uniform resource locator (URL). When a page is cached, certain metadata is also stored along with the page. That metadata includes a description of what extra attributes, if any, must be consulted to determine what version of content to serve in response to a request. When a request is fielded, a cache reader consults this metadata at a primary cache address, then extracts the values of attributes, if any are specified, and uses them in conjunction with the URL to search for an appropriate response at a secondary cache address. These attributes may include HTTP request headers, cookies, query string, and session variables. If no entry exists at the secondary address, the request is forwarded to a page generator at the back-end.
Abstract:
A system includes a processor and a non-transitory computer readable medium storing instructions translatable by the processor. The instructions when translated by the processor cause the system to perform, including determining an exemplar reference which identifies a managed object stored in a repository residing in an enterprise computing environment. The system can determine a translation group utilizing the exemplar reference. The managed object may represent a content item. The translation group may include the content item and the content item may be multilingual enabled. The system can determine an effective locale for a request for content received from a client device communicatively connected to a web server in the enterprise computing environment, determine a language that is appropriate for the effective locale, and respond to the request for content with the content item or a translation of the content item that is in the language appropriate for the effective locale.
Abstract:
A method and system disclosed herein can be used to determine relationships between objects, determining which of those relationships are significant for a specific action, and determining physical dependencies between the objects. The method and system can be used to perform actions consistent with integrity constraints, and therefore, performs the actions in the correct order with a reduced likelihood of errors. The method and system are highly beneficial in that they can significantly enhance content management and can be implemented without having to write new or edit existing applications. Also, existing content data and applications may be used without any changes. Accordingly, the method and system can be advantageously useful in deploying or otherwise pushing out new content to existing content systems.
Abstract:
Embodiments disclosed herein provide a high performance content delivery system in which versions of content are cached for servicing web site requests containing the same uniform resource locator (URL). When a page is cached, certain metadata is also stored along with the page. That metadata includes a description of what extra attributes, if any, must be consulted to determine what version of content to serve in response to a request. When a request is fielded, a cache reader consults this metadata at a primary cache address, then extracts the values of attributes, if any are specified, and uses them in conjunction with the URL to search for an appropriate response at a secondary cache address. These attributes may include HTTP request headers, cookies, query string, and session variables. If no entry exists at the secondary address, the request is forwarded to a page generator at the back-end.