Abstract:
A method for producing an organic electronic device is disclosed. In an embodiment the method includes applying an organic material to a substrate to form at least one organic functional layer, applying a patterned electrode material to the at least one organic functional layer by a first mask, and removing the organic material from regions which are free of the electrode material.
Abstract:
The invention relates to an organic light-emitting component which has an organic functional layer stack (3) having at least one light-emitting layer, which is designed to generate light during operation of the component, a transparent first electrode (2) and a transparent second electrode (4), which are designed to inject charge carriers into the organic functional layer stack (3) during operation, and a heat distribution layer (9), which is applied over the electrodes (2, 4) and the organic functional layer stack (3) and which has at least one plastic layer (10) and a highly heat conductive layer (11), wherein the heat distribution layer (9) has at least one transparent sub-region (91) and at least one non-transparent sub-region (92).
Abstract:
A method for producing an organic electronic device is disclosed. In an embodiment the method includes applying an organic material to a substrate to form at least one organic functional layer, applying a patterned electrode material to the at least one organic functional layer by a first mask, and removing the organic material from regions which are free of the electrode material.
Abstract:
Various embodiments may relate to a method for working an apparatus having at least one electrical layer structure. The electrical layer structure includes a dielectric layer in physical contact with an electrically conductive layer and the electrical layer structure has a first electrical conductivity. The method may include forming an electrical connection to the dielectric layer of the electrical layer structure, and forming an electrical voltage profile at the electrical connection in such a way that a second electrical conductivity is formed; wherein the second electrical conductivity is greater than the first electrical conductivity. The electrical layer structure has the second electrical conductivity after the reduction of the electrical voltage profile.
Abstract:
An organic optoelectronic component is disclosed. In an embodiment, an organic optoelectronic component includes an organic layer sequence having an active layer for emitting or absorbing electromagnetic radiation, a thin-film encapsulation on the organic layer sequence, an absorption layer on the organic layer sequence, the absorption layer configured to absorb and store a substance which is harmful to the organic layer sequence and a transport layer directly adjacent to the absorption layer, the transport layer configured to transport the harmful substance, wherein the transport layer has a greater diffusion coefficient and/or a higher transmission rate for the harmful substance than the absorption layer, and wherein the absorption layer has a higher storage capacity for the harmful substance than the transport layer so that the harmful substance, upon contact with the transport layer, is distributed within the transport layer and is subsequently absorbed by the absorption layer.
Abstract:
An apparatus may include a first support covered with at least one ALD precursor and/or at least one MLD precursor, and a second support covered with at least one ALD precursor and/or at least one MLD precursor which is/are complementary to the ALD precursor and/or MLD precursor of the first support. The first support is at least partly joined to the second support by an atomic bond between the ALD precursor of the first support and the ALD precursor of the second support or between the MLD precursor of the first support and the MLD precursor of the second support in such a way that an ALD layer or an MLD layer is formed.
Abstract:
Various embodiments may relate to a method for processing an electronic component. The method includes applying a planar structure provided with predetermined separation locations to the electronic component, and removing a part of the applied planar structure, wherein removing includes separating the planar structure at the predetermined separation locations.
Abstract:
Various embodiments may relate to a component, including a carrier, a first electrode on or over the carrier, an organic functional layer structure on or over the first electrode, a second electrode on or over the organic functional layer structure, and thin film encapsulation. The first electrode and the second electrode are configured in such a way that an electrical connection of the first electrode to the second electrode is established only through the organic functional layer structure. The first electrode and/or the second electrode is electrically coupled to the carrier. The thin-film encapsulation together with the carrier forms a structure which seals the organic functional layer structure as well as at least one electrode out of the first electrode and the second electrode hermetically against water and/or oxygen.
Abstract:
The invention relates to an optoelectronic semiconductor component (10) comprising a substrate (1), a first insulator layer (2), and a second insulator layer (3). Furthermore, the semiconductor component (10) comprises an organic semiconductor layer sequence (4) having an active area (4a) which, during operation, generates or receives light, a first electrode (5) and a second electrode (6), and encapsulation (7) which covers the organic semiconductor layer sequence (4) and the first insulator layer (2) completely and covers the second insulator layer (3) and the first electrode (5) or the second electrode (6) partially. Here, the first electrode (5) is arranged between the organic semiconductor layer sequence (4) and the first insulator layer (2), and the second electrode (6) is arranged on the organic semiconductor layer sequence (4), wherein the first electrode (5) and/or the second electrode (6) is/are at least partly arranged on the second insulator layer (3).
Abstract:
Various embodiments may relate to a method for processing an electronic component. The method includes applying a planar structure provided with predetermined separation locations to the electronic component, and removing a part of the applied planar structure, wherein removing includes separating the planar structure at the predetermined separation locations.