Abstract:
The invention relates to an optoelectronic module, comprising a housing (11) having a first housing part (11) having a first cover surface (11a) and an opening (4); a mechanically flexibly designed organic light source (2) having an illuminating surface (2a); and a cover element (3) which is mounted on the illuminating surface (2a) and has a light-transmissive surface (3a) facing away from the illuminating surface (2a), wherein the organic light source (2) is introduced at least at some points into the opening (14), the first cover surface (11a) is curved and/or bowed, the size of the illuminating surface (2a) is at least 1 cm2, preferably at least 5 cm2, and the distance between the illuminating surface (2a) and the first cover surface (11a) is at most 1 cm, preferably at most 5 mm.
Abstract:
An organic optoelectronic component is disclosed. In an embodiment, an organic optoelectronic component includes an organic layer sequence having an active layer for emitting or absorbing electromagnetic radiation, a thin-film encapsulation on the organic layer sequence, an absorption layer on the organic layer sequence, the absorption layer configured to absorb and store a substance which is harmful to the organic layer sequence and a transport layer directly adjacent to the absorption layer, the transport layer configured to transport the harmful substance, wherein the transport layer has a greater diffusion coefficient and/or a higher transmission rate for the harmful substance than the absorption layer, and wherein the absorption layer has a higher storage capacity for the harmful substance than the transport layer so that the harmful substance, upon contact with the transport layer, is distributed within the transport layer and is subsequently absorbed by the absorption layer.
Abstract:
In various embodiment examples, an electronic component is provided, the electrical component comprising an electrically active area, having a first contact pad; a second contact pad; an organic functional layer structure between the first contact pad and the second contact pad; at least one electrical connection, which is coupled to the first contact pad or to the second contact pad, and an encapsulation, which partially covers the electrically conductive area in such a way that part of the first contact pad or of the second contact pad is exposed.
Abstract:
An optoelectronic component includes a substrate, a first electrode on the substrate, a radiation-emitting or radiation-absorbing layer sequence on the first electrode, a second electrode on the layer sequence, an encapsulation layer on the second electrode, and a covering layer on the encapsulation layer. The covering layer has a first main surface and second main surface. At least one intended rupture surface is provided between the first and the second main surface of the covering layer.
Abstract:
The invention relates to an optoelectronic component (100) comprising an organic light emitting diode (1) designed for emitting radiation and/or heat, a substrate (2), on which the organic light emitting diode is arranged, wherein the substrate (2) comprises a first substrate material (21) and at least one substrate cavity (22) which is filled with a second substrate material (23) different than the first substrate material (21), wherein the second substrate material (23) is designed to dissipate the heat emitted by the organic light emitting diode (1).
Abstract:
An optoelectronic component includes a substrate, a first electrode on the substrate, a radiation-emitting or radiation-absorbing layer sequence on the first electrode, a second electrode on the layer sequence, an encapsulation layer on the second electrode, and a covering layer on the encapsulation layer. The covering layer has a first main surface and second main surface. At least one intended rupture surface is provided between the first and the second main surface of the covering layer.
Abstract:
An organic optoelectronic component may include at least one contact pad with a first electrical contact region and a second electrical contact region. The first electrical contact region and the second electrical contact region are electrically connected to the contact pad. The second electrical contact region is designed in such a way that it has a higher adhesion than the first electrical contact region in respect of a cohesive connection means with the contact pad. The contact pad is designed in such a way that the first electrical contact region is free of cohesive connection means.
Abstract:
The invention relates to an optoelectronic module, comprising a housing (11) having a first housing part (11) having a first cover surface (11a) and an opening (4); a mechanically flexibly designed organic light source (2) having an illuminating surface (2a); and a cover element (3) which is mounted on the illuminating surface (2a) and has a light-transmissive surface (3a) facing away from the illuminating surface (2a), wherein the organic light source (2) is introduced at least at some points into the opening (14), the first cover surface (11a) is curved and/or bowed, the size of the illuminating surface (2a) is at least 1 cm2, preferably at least 5 cm2, and the distance between the illuminating surface (2a) and the first cover surface (11a) is at most 1 cm, preferably at most 5 mm.
Abstract:
A double-sided emissive organic display device includes a carrier, a control element layer structure above the carrier, a plurality of first organic light emitting components, which are formed above the carrier, which are electrically connected to the control element layer structure and which are driven by means of the control element layer structure during the operation of the double-sided emissive organic display device and emit first light substantially in a direction toward the carrier, and a plurality of second organic light emitting components, which are formed above the control element layer structure and which are electrically connected to the control element layer structure and which are driven by means of the control element layer structure during the operation of the double-sided emissive organic display device and emit second light substantially in a direction away from the carrier.
Abstract:
Various embodiments relate to a method for closely connecting an organic optoelectronic component to a connection piece, including forming a first cavity in the organic optoelectronic component, wherein the first cavity has at least a first opening, introducing a connecting structure through the first opening into the first cavity, wherein the connecting structure has a first fixing area, wherein the first fixing area is configured partially complementarily to the form of the first cavity, forming a second cavity in a connection piece, wherein the second cavity has at least a second opening, wherein the second cavity is configured partially complementarily to the form of the second fixing area, and introducing a second fixing area through the second opening into the second cavity, and forming a friction-fitting connection of the organic optoelectronic component with the connecting piece once the connecting structure has been introduced into the first and the second cavity.