Abstract:
Aspects of the disclosure regard a bolt assembly which comprises a bolt extending in a longitudinal direction through a flange connection, the bolt comprising a first portion and a second portion, the first portion comprising a threaded section at a first side of the flange connection and the second portion comprising a head portion at a second side of the flange connection. The bolt assembly further comprises a nut screwed on the threaded section and a spacer arranged between the nut and the flange connection or between the head portion and the flange connection. The bolt is comprised of a titanium alloy.
Abstract:
A system has a frame with first and second spaced apart edges, a first holder couplable to the fuselage structure and embodied for articulated connection to a first region of the frame that is close to the first edge, a second holder couplable to the fuselage structure, and a strut. A first end of the strut is connectable in an articulated manner to the second holder. A second end of the strut is connectable in an articulated manner to a second region of the frame near the second edge and remote from the first edge. The frame and the strut form a triangular structure with the first and second holders. The strut and the frame form two sides of the triangular structure. A length of the first and/or second side is variable to adjust the position of the frame.
Abstract:
A thread form for a threaded connection comprising a plurality of threads, wherein at least a portion of each of the threads comprise a root having a root radius that extends from a point central to the root and having planar flanks extending from both sides thereof.
Abstract:
A method to prevent corrosion of a susceptible article of a two-article system, in which first and second articles of the two-article system have surfaces facing one another and in which the two articles have different anodic indices includes applying a coating material to the surface of the first article and curing the coating material on the surface of the first article. The method further includes contacting and securing the surface of the first article with the surface of the second article. The two articles exhibit substantially no corrosion following exposure to a corrosive environment under standard GMW17026 for a 15 year simulated test.
Abstract:
A steel is used for providing a bolt that has a high strength and still exhibits excellent hydrogen embrittlement resistance. The steel contains C of 0.30% to 0.50%, Si of 1.0% to 2.5%, Mn of 0.1% to 1.5%, P of greater than 0% to 0.015%, S of greater than 0% to 0.015%, Cr of 0.15% to 2.4%, Al of 0.010% to 0.10%, N of 0.001% to 0.10%, Cu of 0.1% to 0.50%, Ni of 0.1% to 1.0%, Ti of 0.05% to 0.2%, and V of 0% to 0.2%, with the remainder including iron and inevitable impurities, in which a ratio [Ni]/[Cu] is 0.5 or more, and a total content [Ti]+[V] is 0.085% to 0.30%.
Abstract:
A blind bolt and tool is used for fastening a bolt through a hole in a structure when only one side of the structure is accessible. A receiver is formed on the tip end of a bolt shaft opposite from a bolt head. Internal threads are formed within the receiver proximate an outward end, and a hex socket is formed in the inward end of the receiver. External threads and a guide are formed on a tip of the tool, and the external threads mate with the internal threads in the receiver to hold the bolt during installation. A hex key on one end of the tool engages the hex socket in the receiver so that the tool may impose a torque on the bolt when a nut is being tightened on the bolt. In another embodiment, a splined tip is formed on the end of the bolt. The tip is designed to shear off when a sufficient torque is applied. Also, a shim is configured to fit between structures held together by the blind bolt.
Abstract:
There is provided in a preferred embodiment of the present invention a maintenance device having a lubricant reservoir attached to the upper end of a fixed body, and a dynamic body that is slidably engaged and disposed within the fixed body at the lower end thereof. Attached to the base of dynamic body is a trio of cleaning arms. A spring that is internally positioned between the dynamic body and the fixed body biases the dynamic body downward and the cleaning arms to a relaxed position. As the dynamic body retracts upon the application of force by a user, lubricant is released and pumped from the lubricant reservoir and each of the cleaning arms pivot and engage the side wall of the male connector.
Abstract:
A clevis pin assembly includes a pin that may be removably inserted into a coupling. The pin is structured to have a channel extending therethrough. The channel may receive a lubricant thereby inhibiting the pin from becoming seized within the coupling. A fitting is removably coupled to the pin. The fitting may be fluidly coupled to a lubrication source thereby facilitating the lubricant to be introduced into the channel. A retainer is removably inserted through the pin thereby retain the pin within the coupling.
Abstract:
An assembly of parts, at least one of which is made of composite material, includes at least one fastener including a body and also two stops, between which the parts held by the fastener are disposed, holes formed in the parts held by the fastener, the body of the fastener being accommodated in the holes, the holes having a diameter adapted to that of the body of the fastener so as to allow transmission of forces by the parts and the fastener hammering together. The stops of the fastener exert a compressive force C that makes it possible to obtain transmission of forces by adhesion between the parts held by the fastener.
Abstract:
A wire rod having a tensile strength of 950 to 1600 MPa for manufacturing a steel wire for a pearlite structure bolt according to the present invention includes a predetermined chemical composition and is manufactured by hot rolling and then direct isothermal transformation treating, in which when an amount of C in terms of mass % is indicated as , a structure at an area from a surface of the wire rod to a depth of 4.5 mm includes 140× area % or more of a pearlite structure, the average block size of a pearlite block at the area from the surface of the wire rod to the depth of 4.5 mm is 20 μm or less, in which the average block size is measured in a transverse section of the wire rod, and the average lamellar spacing of the pearlite structure at the area from the surface of the wire rod to the depth of 4.5 mm is more than 120 nm to 200 nm.