Abstract:
A method of setting function includes first to fourth steps. The first step connects a recording medium to a first electrical apparatus having an optional function either disabled or temporarily enabled, the recording medium containing license information to enable the optional function. The second step allows first electrical apparatus to authenticate the license information. The third step, subsequent to the second step, enables the optional function of the first electrical apparatus. The fourth step, subsequent to the third step, records the optional function as having been authenticated in the license information.
Abstract:
A method for determining a laser welding condition of the present disclosure includes a first step, a second step, and a third step. In the first step, workpiece information indicating characteristics of a workpiece is input. In the second step, laser information indicating characteristics of laser light is input. In the third step, a first welding condition is calculated based on the workpiece information and the laser information, and then displayed. The first welding condition is any one of a recommended laser power of the laser light, a recommended welding speed, a recommended welding pattern, an estimated strength of a welded portion, and an estimated weld depth of the welded portion. Furthermore, the workpiece information includes a joint shape of the workpiece. Thus, an optimum weld condition can be set while considering a shape of a joint in welding.
Abstract:
A robot system control method includes a first step through a fifth step. Particularly in the second step, a second transformation matrix that represents the positional relation between a first slave robot and a second slave robot is generated and stored in a master robot. In the fourth step, based on a second command obtained using a first transformation matrix and the second transformation matrix, the master robot instructs the second slave robot to operate. In the fifth step, the first slave robot and the second slave robot perform a cooperative operation with the master robot. Thus, in the state where a working robot that can perform TCP matching with only part of the other robots is set to a master robot, all of the robots can perform a cooperative operation.
Abstract:
A robot control method includes a teaching step, first processing step, modifying step, second processing step, and third processing step. In the modifying step, a third teaching point is changed to a second modified point, a fourth teaching point to a third modified point, and a fifth teaching point to a fourth modified point, based on a difference between a second teaching point and a first modified point. A profile modifying control to change the position of a work tool is applied, using a sensor mounted on the processing advancing direction side of the work tool, in the first processing step and the third processing step. An attitude of the work tool is changed during the second processing step.
Abstract:
An arc welding method of the present disclosure includes a teaching program creation step, a position detection step, and a welding step. In the position detection step subsequent to the teaching program creation step, a position detection program is executed with use of a welding torch having a servomotor. In the welding step subsequent to the position detection step, a welding program is executed with use of the welding torch. A gain of the servomotor that is used for position detection in the position detection step is higher than a gain of the servomotor that is used for welding in the welding step.