摘要:
Apparatus for improved treatment of effluents are provided herein. In some embodiments, an abatement system may include an exhaust conduit to flow an effluent stream therethrough; a plurality of packed beds disposed in the exhaust conduit to remove non-exhaustible effluents from the effluent stream; one or more spray jets to provide an effluent treating agent between adjacent packed beds, the effluent treating agent to remove non-exhaustible effluents from the effluent stream; and a dripper disposed in the exhaust conduit above an uppermost packed bed to provide the effluent treating agent in large droplets to wet and rinse particulate from an upper surface of the uppermost packed bed substantially without forming fine droplets.
摘要:
Methods and apparatus for treating effluents in process systems are provided In some embodiments, a system for treating effluent includes a process chamber having a processing volume; an exhaust conduit coupled to the process chamber to remove an effluent from the processing volume; and a reactive species generator coupled to the exhaust conduit to inject a reactive species into the exhaust conduit to treat the effluent, wherein the reactive species generator generates a reactive species comprising at least one of singlet hydrogen, hydrogen ions or hydrogen radicals. In some embodiments, a method for treating effluent includes flowing an effluent from a processing volume of a process system through an exhaust conduit fluidly coupled to the processing volume; treating the effluent in the exhaust conduit with a reactive species comprising at least one of singlet hydrogen, hydrogen ions, or hydrogen radicals; and flowing the treated effluent to an abatement system.
摘要:
Methods and apparatus for recovering hydrogen fluoride (HF) are provided herein. In some embodiments, an apparatus includes a system for processing substrates, including a process chamber for processing a substrate; a fluorine generator coupled to the process chamber to provide fluorine (F2) thereto; an abatement system coupled to the process chamber to abate fluorine-containing effluents exhausted from the process chamber and to convert at least a portion of the fluorine-containing effluents into hydrogen fluoride (HF); an HF recovery system configured to at least one of collect, purify, or concentrate the HF converted by the abatement system; and a conduit for providing the recovered hydrogen fluoride (HF) to the fluorine generator or another application in the manufacturing process.
摘要:
Methods and apparatus for recovery and reuse of reagents are provided herein. In some embodiments, a system for processing substrates may include a process chamber for processing a substrate; a reagent source coupled to the process chamber to provide a reagent to the process chamber; and a reagent recovery system to collect, and at least one of purify or concentrate the reagent recovered from an effluent exhausted from the process chamber. In some embodiments, a method for recovering unreacted reagent may include providing reagent from a reagent source to a process chamber; exposing a substrate disposed in the process chamber to the reagent, forming an effluent; exhausting the effluent from the process chamber; and recovering unreacted reagent from the effluent in a reagent recovery system.
摘要:
Methods and apparatus for treating an exhaust gas in a foreline of a substrate processing system are provided herein. In some embodiments, an apparatus for treating an exhaust gas in a foreline of a substrate processing system includes a plasma source coupled to a foreline of a process chamber, a reagent source coupled to the foreline upstream of the plasma source, and a foreline gas injection kit coupled to the foreline to controllably deliver a gas to the foreline, wherein the foreline injection kit includes a pressure regulator to set a foreline gas delivery pressure setpoint, and a first pressure gauge coupled to monitor a delivery pressure of the gas upstream of the foreline.
摘要:
Methods and apparatus for enhanced control, monitoring and recording of incoming chemical and power use, and emissions of electronic device manufacturing systems are provided. In some embodiments, integrated sub-fab system systems may monitor the energy usage of the sub-fab equipment. The tool can enter many different depths of energy savings modes such as idle (shallow energy savings where production equipment can recover to normal production with no quality or throughput impact in seconds), sleep (deeper energy savings where production equipment can recover in minutes), or hibernate (where production equipment may require hours to recover not to have impact on quality, or throughput) for the system. In some embodiments, the system may monitor and display all gas emissions in a sub-fab as well as the Semi S23 method reporting of CO2 equivalent emission. The system may monitor effluent process gases and energy use from the process tool and sub-fab equipment.