Abstract:
There is provided an imaging system including a camera and a control host. The camera identifies ambient light intensity and performs trigger event detection in a low power mode. When the camera detects a trigger event in the low power mode, the control host is woken up. The camera also determines an exposure mode according the ambient light intensity and informs the exposure mode to the control host such that an operating mode of the control host after being woken up matches the exposure mode of the camera.
Abstract:
There is provided a photographing device having two output interfaces that respectively used to output a first image frame and a second image frame. The first image frame is provided to a processor of the photographing device to perform the feature extraction and tag the second image frame accordingly. The tagged second image frame is for the image recording of an external back end.
Abstract:
A smart motion detection device with a determining method includes a memory, a processor, and a sensor array coupled to the memory and the processor. An image captured by the sensor array is processed by the processor. The sensor array is adapted to pre-store the image into the memory when the processor is operated in the sleep mode, and the pre-stored image is transmitted to the processor when the processor is operated in the wakeup mode. The sensor array includes a comparator adapted to generate an alarm signal for switching the processor from the sleep mode to the wakeup mode in accordance with a comparison result of the pre-stored image. The determining method includes the processor analyzing images captured by the sensor array when the sensor array is activated to capture the images, and the processor analyzing images pre-stored inside the memory when the sensor array is not activated.
Abstract:
The present disclosure provides a time delay integration (TDI) sensor using a rolling shutter. The TDI sensor includes multiple pixel columns. Each pixel column includes multiple pixels arranged in an along-track direction, wherein two adjacent pixels or two adjacent pixel groups in every pixel column have a separation space therebetween. The separation space is equal to a pixel height multiplied by a time ratio of a line time difference of the rolling shutter and a frame period, or equal to a summation of at least one pixel height and a multiplication of the pixel height by a time ratio of the line time difference and the frame period. The line time difference of the TDI sensor is changeable without changing the separation space.
Abstract:
There is provided a photographing device having two output interfaces that respectively used to output a first image frame and a second image frame. The first image frame is provided to a processor of the photographing device to perform the feature extraction and tag the second image frame accordingly. The tagged second image frame is for the image recording of an external back end.
Abstract:
A digital imaging device including a sensor array, an analog front end and a digital back end. The sensor array is configured to output black pixel data and normal pixel data. The analog front end is configured to amplify the black pixel data and the normal pixel data with a gain, and calibrate the amplified black pixel data and the amplified normal pixel data with a calibration value. The digital back end is configured to digitize the amplified and calibrated black pixel data, calculate a data offset according to digital black pixel data, determine a dynamic adjust scale, calculate the calibration value according to the gain, the data offset and the dynamic adjust scale, and adjust the gain according to the dynamic adjust scale.
Abstract:
There is provided a back side illuminated semiconductor structure with a semiconductor capacitor connected to a floating diffusion node in which the semiconductor capacitor for reducing a dimension of the floating diffusion node is provided above the floating diffusion node so as to eliminate the influence thereto by incident light and enhance the light absorption efficiency.
Abstract:
A digital imaging device including a sensor array, an analog front end and a digital back end. The sensor array is configured to output black pixel data and normal pixel data. The analog front end is configured to amplify the black pixel data and the normal pixel data with a gain, and calibrate the amplified black pixel data and the amplified normal pixel data with a calibration value. The digital back end is configured to digitize the amplified and calibrated black pixel data, calculate a data offset according to digital black pixel data, determine a dynamic adjust scale, calculate the calibration value according to the gain, the data offset and the dynamic adjust scale, and adjust the gain according to the dynamic adjust scale.
Abstract:
There is provided a photographing device having two output interfaces that respectively used to output a first image frame and a second image frame. The first image frame is provided to a processor of the photographing device to perform the feature extraction and tag the second image frame accordingly. The tagged second image frame is for the image recording of an external back end.
Abstract:
A smart motion detection device with a determining method includes a memory, a processor, and a sensor array coupled to the memory and the processor. An image captured by the sensor array is processed by the processor. The sensor array is adapted to pre-store the image into the memory when the processor is operated in the sleep mode, and the pre-stored image is transmitted to the processor when the processor is operated in the wakeup mode. The sensor array includes a comparator adapted to generate an alarm signal for switching the processor from the sleep mode to the wakeup mode in accordance with a comparison result of the pre-stored image. The determining method includes the processor analyzing images captured by the sensor array when the sensor array is activated to capture the images, and the processor analyzing images pre-stored inside the memory when the sensor array is not activated.