Abstract:
In an embodiment, a wireless power transmission system includes at least one of the following combinations: i) a transmission-side series resonance circuit including the first coil and a first capacitor disposed between the first coil and a power transmission circuit, and ii) a transmission-side parallel resonance circuit including the second coil and a second capacitor disposed between the second coil and the two power transmission electrodes, and a combination of i) a reception-side parallel resonance circuit including a third coil and a third capacitor disposed between the third coil and two power reception electrodes, and ii) a reception-side series resonance circuit including a fourth coil and a fourth capacitor disposed between the fourth coil and a power reception circuit.
Abstract:
An electric power transmission device includes a first power transmitting electrode, a second power transmitting electrode, a conductive first shield disposed between the first power transmitting electrode and the second power transmitting electrode, a conductive second shield that covers at least one of a first gap between the first power transmitting electrode and the first shield or a second gap between the second power transmitting electrode and the first shield, and a conductive third shield that covers at least one of a plurality of gaps between a plurality of divided portions of the second shield.
Abstract:
In a first power transmission period, a power transmission device holds, in a memory, a value indicating a frequency f0 corresponding to an actual voltage value that matches a requested voltage value, then causes first AC power to be transmitted by using the frequency f0, and uses a foreign substance detector to determine whether or not a foreign substance is present. When it is determined that no foreign substance is present, in a second power transmission period, the power transmission device causes the power transmission of the first AC power to be resumed by using the value indicating the frequency f0, the value being held in the memory.
Abstract:
A power transmitting device according to one embodiment includes a power transmitting antenna, an oscillator, control circuitry, and a communication circuit. The control circuitry sets an initial value of a phase shift amount, causes the oscillator to output preliminary AC power of a voltage corresponding to the initial value, reduces the phase shift amount from the initial value at predetermined time intervals, causes the oscillator to output preliminary AC power of each voltage corresponding to each of the reduced phase shift amounts, fixes the phase shift amount upon activation of control circuitry in the power receiving device upon receipt of a first response signal indicating the activation of the control circuitry in the power receiving device from the power receiving device through the communication circuit, and transmits the AC power while maintaining the voltage corresponding to the fixed phase shift amount.
Abstract:
A power transmitter includes: a first power transmission electrode having a flat surface; a second power transmission electrode that is spaced from the first power transmission electrode in a direction along the surface of the first power transmission electrode and has a flat surface; a power transmission circuit that is electrically connected to the first and second power transmission electrodes and outputs AC power to the first and second power transmission electrodes; a first conductive shield that is disposed between the first and second power transmission electrodes, the first conductive shield being spaced from each of the first and second power transmission electrodes; and at least one second conductive shield that is spaced from the first and second power transmission electrodes in a direction perpendicular to the surface of the first power transmission electrode and covers at least one of a first gap and a second gap, the first gap being disposed between the first power transmission electrode and the first shield, the second gap being disposed between the second power transmission electrode and the first shield.
Abstract:
A power transmission apparatus oscillates alternating current power at a first frequency (f1) which is lower than a resonant frequency (fr) of the second resonator and at a second frequency (f2) which is higher than the resonant frequency (fr). The power transmission apparatus measures an inductance value Lin (f1) and an inductance value Lin (f2). The inductance value Lin (f1) is measured when the oscillation circuit oscillates alternating current power at the first frequency (f1), and the inductance value Lin (f2) is measured when the oscillation circuit oscillates alternating current power at the second frequency (f2). The power transmission apparatus calculates a coupling coefficient k by using an expression represented by k2=1−Lin(f2)/Lin(f1), to detect relative position of the second resonator to the first resonator on the basis of the coupling coefficient k.
Abstract:
A power transmission device includes an inverter, an oscillator, a foreign substance detector, and a power transmission control circuitry. The power transmission control circuitry causes the foreign substance detector to perform a series of multiple processes and determine whether a foreign substance is present before a transmission of first AC power starts, and then causes the inverter to start the transmission of the first AC power. After the transmission starts, a detection period in which foreign substance detecting is performed and a power transmission period in which transmission of the first AC power is performed are repeated. The series of multiple processes is divided and performed in the multiple repeated detecting periods. The foreign substance detector is caused to divide and perform the series of multiple processes using the detecting periods and determine whether a foreign substance is present.
Abstract:
A power transmission device includes an inverter using a frequency f11 lower than a frequency f0 between a first resonator and a second resonator or a frequency f12 higher than the frequency f0 to generate a first power; an oscillator using a frequency f10 lower than a frequency fr between the first resonator and a third resonator or a frequency f20 higher than the frequency fr to generate a second power; and a power transmission control circuitry setting a foreign object detection period between first and second transmission periods, using the frequency f11 or frequency f12 in the first transmission period, using the frequency f10 or frequency f20 in the foreign object detection period, and if it is determined that a substance is present in the foreign object detection period, transmitting power in the second transmission period at a frequency different from the frequency used in the first transmission period.