Abstract:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate an many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
Abstract:
A switching circuit includes: a drive power supply; a first transistor and a second transistor; a drive signal source; and a drive circuit. Each of the first transistor and the second transistor includes: a drain electrode and a source electrode in which a main current flows when a corresponding one of the first transistor and the second transistor is ON; a first source terminal for passing the main current; and a second source terminal. Here, the first source terminal is connected to the source electrode at an impedance lower than an impedance of the second source terminal.
Abstract:
A switching circuit includes: a drive power supply; a first transistor and a second transistor; a drive signal source; and a drive circuit. Each of the first transistor and the second transistor includes: a drain electrode and a source electrode in which a main current flows when a corresponding one of the first transistor and the second transistor is ON; a first source terminal for passing the main current; and a second source terminal. Here, the first source terminal is connected to the source electrode at an impedance lower than an impedance of the second source terminal.
Abstract:
When compression encoding processing of an image is performed in units of macroblocks using a pipeline structure, an application of a skip mode or the like according to MPEG4AVC to compression encode an encoding target block requires motion vectors and the like of adjacent blocks of the encoding target block. However, depending on a structure of the pipeline stages, the motion vectors may not be determined. In such cases, the skip mode cannot be applied to compression encode the encoding target block. This problem can be solved by (i) calculating all motion information candidates, of the encoding target block, corresponding to all motion information selectable by a previous block of the encoding target block, and (ii) selecting, as the motion information of the encoding target block in the skip mode, the motion information corresponding to the motion information determined for the previous block.
Abstract:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate an many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
Abstract:
A moving image decoding apparatus which enables reduction in the memory bandwidth and the memory access latency for the motion compensation filter coefficients for use in inter-picture prediction involving motion compensation using variable coefficients includes: a decoding unit (101) which decodes, from a coded stream, a plurality of motion compensation filter coefficients; a memory (109) for holding the motion compensation filter coefficients included in the coded stream; a filter coefficient storage unit (103) for holding at least one of the motion compensation filter coefficients which is required for the motion compensation; a motion compensation unit (107) which performs motion compensation using the required motion compensation filter coefficient held in the filter coefficient storage unit; and a filter coefficient transfer control unit (102) which writes, in the memory, the motion compensation filter coefficients decoded by the decoding unit, and transfers the required motion compensation filter coefficient from the memory to the filter coefficient storage unit, only when the required coefficient is not yet stored therein.