摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disk (200) carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations (225), access secure non-volatile storage, submit data to CODECs for output (250), and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
Technologies are disclosed to transfer responsibility and control over security from player makers to content authors by enabling integration of security logic and content. An exemplary optical disc carries an encrypted digital video title combined with data processing operations that implement the title's security policies and decryption processes. Player devices include a processing environment (e.g., a real-time virtual machine), which plays content by interpreting its processing operations. Players also provide procedure calls to enable content code to load data from media, perform network communications, determine playback environment configurations, access secure nonvolatile storage, submit data to CODECs for output, and/or perform cryptographic operations. Content can insert forensic watermarks in decoded output for tracing pirate copies. If pirates compromise a player or title, future content can be mastered with security features that, for example, block the attack, revoke pirated media, or use native code to correct player vulnerabilities.
摘要:
In an exemplary embodiment, digital content is mastered as a combination of encrypted data and data processing operations that enable use in approved playback environments. Player devices having a processing environment compatible with the content's data processing operations are able to decrypt and play the content. Players can also provide content with basic functions, such as loading data from media, performing network communications, determining playback environment configuration, controlling decryption/playback, and/or performing cryptographic operations using the player's keys. These functions allow the content to implement and enforce its own security policies. If pirates compromise individual players or content titles, new content can be mastered with new security features that block the old attacks. A selective decryption capability can also be provided, enabling on-the-fly watermark insertion so that attacks can be traced back to a particular player. Features to enable migration from legacy formats are also provided.
摘要:
To prevent piracy, audiovisual content is encrypted prior to transmission to consumers. A low-cost, high-security cryptographic rights module (such as a smartcard) enables devices such as players/displays to decode such content. Security-critical functions may be performed by the cryptographic module in a manner that allows security compromises to be addressed by upgrading or replacing cryptographic modules, thereby avoiding the need to replace or modify other (typically much higher-cost) components. The security module contains cryptographic keys, which it uses to process rights enablement messages (REMs) and key derivation messages (KDMs). From a REM and KDM, the security module derives key data corresponding to content, uses public key and/or symmetric cryptography to re-encrypt the derived key data for another device, and provides the re-encrypted key data to the decoding device. The decoding device then uses cryptographic values derived from the re-encrypted key data to decrypt the content.