Abstract:
A base station, a terminal, a system and methods for performing data transmission in a Time Division Duplex (TDD) system are disclosed. One of the methods includes: the base station sending an uplink scheduling grant signaling to the terminal on a carrier m, and after receiving uplink data sent by the terminal through a Physical Uplink Shared Channel (PUSCH) on a carrier n, the base station sending an ACK/NACK feedback signaling corresponding to the PUSCH to the terminal on the carrier m; wherein, m≠n; a timing relationship between a subframe by which the base station sends the uplink scheduling grant signaling and/or the ACK/NACK feedback signaling and a subframe where the PUSCH is located is identical with a Hybrid Automatic Repeat Request (HARQ) timing relationship corresponding to an uplink/downlink configuration of the carrier m or the carrier n.
Abstract:
A method for sending a physical broadcast channel in the TDD system is disclosed, which is: a signal of a physical broadcast channel is not sent in a pilot position, and the signal of the physical broadcast channel is sent on 4 OFDM symbols of the first subframe of one radio frame. Through the present invention, the extension requirement of the physical broadcast channel capacity in the TDD can be met, and the system complexity is reduced due to the normal cyclic prefix and extended prefix using the same sending method.
Abstract:
A system and a method for allocating Sounding Reference Signal (SRS) resources are provided in the present invention, the method includes: an e-Node-B (eNB) allocating a SRS bandwidth with 4n Resource Blocks (RBs) to a terminal, and equally dividing a time domain sequence of a SRS into t portions in the SRS bandwidth; the eNB configuring a time domain RePetition Factor (RPF) used by the UE, and the eNB configuring the UE to use one or more cyclic shifts in L cyclic shifts for each UE; then the eNB notifying the UE of a value of the time domain RPF, a location of a used frequency comb and a used cyclic shift by signaling, wherein n is a positive integer; the RPF satisfies a following condition: 48 × n RPF can be exactly divided by 12; t is an integer by which 48 × n RPF can be exactly divided; and L≦t.
Abstract:
A method for sending a sounding reference signal (SRS) of uplink channel in a time division duplex system is provided, a terminal calculates the parameters of the resource for sending an SRS in an uplink pilot time slot (UpPTS) according to the configuration information related to the sounding reference signal (SRS) of the uplink channel, the parameters include the frequency domain start position of the resource, and then the SRS is sent over the resource; wherein when the frequency domain start position of the resource is calculated, it is necessary to determine the index of the first sub-carrier in the maximum SRS bandwidth; the terminal determines the index according to the frequency domain position of one PRACH or that of more PRACHs in the uplink pilot time slots, when the PRACH includes the sub-carrier at the lower boundary of the system bandwidth, the upper boundary of the system bandwidth is used as the end position of the maximum SRS bandwidth and the start position of the maximum SRS bandwidth is calculated; and when the PRACH includes the sub-carrier at the upper boundary of the system bandwidth, the lower boundary of the system bandwidth is used as the start position of the maximum SRS bandwidth, and then the index is determined through the start position of the maximum SRS bandwidth plus the offset parameter configured for the terminal. With the sending position of the maximum SRS bandwidth in the UpPTS, which is obtained by the method of the present invention, the interference between the SRS signal and the PARCH can be avoided, and it is possible to implement the channel sounding for more bandwidth.
Abstract:
The disclosure provides a method and system for signaling configuration of a Physical Uplink Shared Channel (PUSCH), the system comprises a base station and a target User Equipment (UE). The method comprises: a base station sends Downlink Control Information (DCI) to the target user equipment through a Physical Downlink Control Channel (PUCCH); and the downlink control information includes orthogonal cover code information and/or cyclic shift information for scheduling the physical uplink shared channel in the multi-antenna port transmission and/or single antenna port transmission. It is very adaptable and flexible to use the combination of multiple kinds of information to indicate the orthogonal cover code information in the downlink control information. The UE can obtain the orthogonal cover code information accurately, and the reliability of services can be improved.
Abstract:
A power control method for a Physical Uplink Control Channel, which includes: when the response information of multiple Physical Downlink Shared Channels (PDSCH) sent by a base station over multiple component carriers is sent on one Physical Uplink Control Channel (PUCCH), the base station indicating a unified transmitted power control command for the Physical Uplink Control Channel; or the base station indicating multiple transmitted power control commands for the Physical Uplink Control Channel. The present invention also provides a base station and a user equipment.
Abstract:
The present invention discloses a method for a signaling configuration of a sounding reference signal. The method includes: a base station notifying a user equipment to aperiodically send the sounding reference signal, and sending configuration information of aperiodically sending the sounding reference signal (SRS) down to the user equipment. The present invention also discloses a base station for a signaling configuration of a sounding reference signal and a user equipment for a signaling configuration of a sounding reference signal. The present invention can realize that the user equipment aperiodically sends the SRS, which improves the utilization ratio of SRS resources and increases the flexibility of resource scheduling.
Abstract:
The present disclosure provides a method for allocating physical hybrid ARQ indicator channels, which is used for sending indication information corresponding to multiple uplink sub-frames in the same downlink sub-frame in a TDD system. The method includes: in the TDD system, through an index of a physical resource block where uplink data resides as well as an index of an uplink sub-frame where the uplink data resides, determining an index of a physical hybrid ARQ indicator channel group where a physical hybrid ARQ indicator channel in an downlink sub-frame resides and an intra-group index of the physical hybrid ARQ indicator channel in the physical hybrid ARQ indicator channel group according to an indexing rule, and further determining an index of the physical hybrid ARQ indicator channel by using the index of the physical hybrid ARQ indicator channel group and the intra-group index. According to implicit mapping, the method of the present disclosure implements the allocation of the physical hybrid ARQ indicator channels over which the downlink indication messages corresponding to each uplink sub-frame are transmitted, thereby being capable of overcoming the problem potentially present in existing technologies that multiple indication messages reside on the same physical hybrid ARQ indicator channel.
Abstract:
A transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. Another transmitting method of a signal on a random access channel in a wireless communication system, comprises the steps that: a terminal transmits a cyclic prefix and a preamble on the random access channel with a set time length ahead of the end position of an uplink pilot time slot, and the length of the preamble is the length of two symbols without a cyclic prefix. The methods can avoid the interference of the preamble to the data of the uplink subframe, and can improve the coverage area of the random access channel and the work efficiency of the time division duplex system.
Abstract:
A method for sending a physical broadcast channel in the TDD system is disclosed, which is: a signal of a physical broadcast channel is not sent in a pilot position, and the signal of the physical broadcast channel is sent on 4 OFDM symbols of the first subframe of one radio frame. Through the present invention, the extension requirement of the physical broadcast channel capacity in the TDD can be met, and the system complexity is reduced due to the normal cyclic prefix and extended prefix using the same sending method.