System for mapping and monitoring emissions and air pollutant levels within a geographical area

    公开(公告)号:US11360236B1

    公开(公告)日:2022-06-14

    申请号:US17577061

    申请日:2022-01-17

    Abstract: The present disclosure provides a system comprising a plurality of autonomous units within a geographical region, each configured with a sensor array and a cognitive emission and air pollutant mapping module that enables them to map their surrounding environment and sense and overlay pollutant and emissions data onto said map, including cameras and object detection algorithms for tracking and photographing pollutant sources. Each unit securely transmits the fused map and pollutant source data to one or more servers that compile a complete 3D map of the geographical area overlaid with pollution data which is updated in real time, and also notify relevant third parties to action pollutant sources within the area. The system can further comprise a plurality of smart light poles for displaying pollution data and advisory notices to citizens within sub-regions of the area.

    Cognitive Wireless Vehicular Emergency Response System for first responders

    公开(公告)号:US20230196924A1

    公开(公告)日:2023-06-22

    申请号:US17557082

    申请日:2021-12-21

    Abstract: The present invention discloses an advanced emergency response system that minimizes physical risk to the first responder and yet allows them to maintain national safety and security within the country. The apparatus involves receiving alerts through the dispatch system located in the first responder car. The first responder car, upon receiving an alert, is dispatched to the appropriate address and is parked within a safe distance from the emergency location. The first responders then dispatch the autonomous rover from their vehicle using a vehicle dashboard. The rover is equipped with cameras, an object detection system, location sensors, and it shares live feeds for situational awareness with the public safety agencies and first responders. It also enables real-time bidirectional communication for first responders, public safety agents and allows them to communicate with the suspects and the victims located at the hazard/emergency site. The system also uses Artificial Intelligence (AI) algorithms to detect safety and security anomalies associated with the emergency situation in the field and shares this information with the public safety agents. If the suspect decides to run and take off, this system allows the first responders to launch a swarm of drones using cognitive vehicle dashboard that keep track of the suspect and provide situational awareness to the first responders and the public safety agents. All components involved in this system use Public Safety Grade FCC Band 14 Telecom Network for wireless communication dedicated to public safety agents and this network provides mission-critical reliability and security. The assembly is easy to install, safe to use, and suitable for all public safety agents and first responders.

    Mission Critical Neighborhood Safety & Security System using Artificial Intelligence, Sensors, Robotics & Telecommunication

    公开(公告)号:US20230196489A1

    公开(公告)日:2023-06-22

    申请号:US17553816

    申请日:2021-12-17

    Abstract: The present invention discloses an advanced process of dealing with emergency situations through an intelligent methodology. The proposed invention can be used by all people to get help and support in a very short time. The Mission Critical Neighborhood Safety and Security System is enabled by artificial intelligence, autonomous robots, mission critical telecom network, and sensors. This system aims to provide neighborhood safety and security service to residents by using autonomous robots that are deployed in each neighborhood. These robots work closely with the mission critical module mounted on light poles and detect anomalies like car accidents, kidnapping, fire, smoke, thefts, gunshots, street fights, etc. The mission critical device mounted on the light pole captures this information and sends this information along with notification to public safety agencies (police, paramedics, firefighters). The public safety agents can then communicate with the victims onsite as well as residents through these robots and thus safeguard neighborhoods. In addition to this, the mission critical device mounted on the light pole is also equipped with acoustic sensors, thermal sensors, high-definition cameras, and air quality monitoring sensors. This information is also relayed to the residents and the public safety agencies. In order to ensure higher reliability, this system uses a mission critical public safety grade telecom network as the primary source of Internet and a WiFi mesh system as a backup source of Internet. This system is powered by electricity available through the light pole as well as solar modules mounted on each of the light poles.

Patent Agency Ranking