Abstract:
A system and method for forming a range estimate for a target with a laser detection and ranging system. The system includes a laser transmitter and an array detector. The method includes: transmitting a plurality of laser pulses; for each transmitted laser pulse: detecting, with the array detector, a plurality of ladar return photons from the laser pulse, each detection producing an electrical pulse; identifying, for each of the electrical pulses, a time bin of a plurality of time bins corresponding to the laser pulse, within which the electrical pulse was produced; forming a one dimensional range histogram array having, for each of a subset of the plurality of bins, an element with a value equal to the number of electrical pulses produced in the array detector during a time interval corresponding to the bin; and forming an estimated range rate for the target.
Abstract:
A system and method for forming an image of a target with a laser detection and ranging system. The system includes a laser transmitter and an array detector. The method includes transmitting a sequence of laser pulses; forming a plurality of point clouds, each point cloud corresponding to a respective transmitted laser pulse, each point in the point cloud corresponding to a point on a surface of the target; grouping the plurality of point clouds into a plurality of point cloud groups according to a contiguous subset of the sequence of laser pulses; forming a plurality of average point clouds, each of the average point clouds being the average of a respective group of the plurality of point cloud groups; and forming a first estimate of a six-dimensional velocity of the target, including three translational velocity components and three angular velocity components, from the plurality of average point clouds.
Abstract:
Embodiments of video and LIDAR target detection and tracking system and method for segmenting targets are generally described herein. In some embodiments, the system may perform moving target detection using three-frame difference processing on frames of LIDAR range images of a scene to identify a moving target and determine an initial position estimate for the moving target. The system may also perform segmentation of the moving target using a single frame of the LIDAR range images to generate a segmented target that may include a target mask and target centroid position. After segmentation, moving target registration including motion compensation may be performed by registering the segmented target in multiple LIDAR frames to determine a target position, a target orientation and a target heading. In some embodiments, a three-dimensional model of the moving target may be generated and added to a sequence of video frames.
Abstract:
A system and method for forming a range rate estimate for a target with a laser detection and ranging system including a laser transmitter and an array detector. The method includes: transmitting a plurality of laser pulses at a pulse repetition frequency; forming a one dimensional time series array corresponding to a time record of ladar return photons detected with the array detector; fitting the time series array with a superposition of a sine and a cosine of an initial value of a tentative frequency; iteratively fitting the time series array with a superposition of a sine and a cosine of the tentative frequency, and adjusting the tentative frequency until a completion criterion is satisfied at a final value of the tentative frequency.
Abstract:
A system and method for forming an image of a target with a laser detection and ranging system. The system includes a laser transmitter and an array detector. The method includes transmitting a sequence of laser pulses; forming a plurality of point clouds, each point cloud corresponding to a respective transmitted laser pulse, each point in the point cloud corresponding to a point on a surface of the target; grouping the plurality of point clouds into a plurality of point cloud groups according to a contiguous subset of the sequence of laser pulses; forming a plurality of average point clouds, each of the average point clouds being the average of a respective group of the plurality of point cloud groups; and forming a first estimate of a six-dimensional velocity of the target, including three translational velocity components and three angular velocity components, from the plurality of average point clouds.
Abstract:
A system and method for forming a range rate estimate for a target with a laser detection and ranging system including a laser transmitter and an array detector. The method includes: transmitting a plurality of laser pulses at a pulse repetition frequency; forming a one dimensional time series array corresponding to a time record of ladar return photons detected with the array detector; fitting the time series array with a superposition of a sine and a cosine of an initial value of a tentative frequency; iteratively fitting the time series array with a superposition of a sine and a cosine of the tentative frequency, and adjusting the tentative frequency until a completion criterion is satisfied at a final value of the tentative frequency.
Abstract:
Embodiments of video and LIDAR target detection and tracking system and method for segmenting targets are generally described herein. In some embodiments, the system may perform moving target detection using three-frame difference processing on frames of LIDAR range images of a scene to identify a moving target and determine an initial position estimate for the moving target. The system may also perform segmentation of the moving target using a single frame of the LIDAR range images to generate a segmented target that may include a target mask and target centroid position. After segmentation, moving target registration including motion compensation may be performed by registering the segmented target in multiple LIDAR frames to determine a target position, a target orientation and a target heading. In some embodiments, a three-dimensional model of the moving target may be generated and added to a sequence of video frames.