Abstract:
A method for the manufacture of a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine including heating a reaction mixture comprising a phenolphthalein compound and a primary arylamine in the presence of an acid catalyst, and a heterocyclic aromatic amine co-catalyst, to form the 2-aryl-3,3-bis(hydroxyaryl) is provided. Polymers including structural units derived from the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine are provided. Methods for the manufacture of a polycarbonate, including manufacturing the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and polymerizing the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine in the presence of a carbonate source are provided.
Abstract:
The present invention relates to a method for the manufacture of a (co)polycarbonate comprising reacting tetrabromo bisphenol A and optionally one or more bisphenol comonomer(s) with phosgene wherein the tetrabromo bisphenol A contains an amount of tetrabromo bisphenol A dimer of at most 3.0 wt.% based on the weight of the tetrabromo bisphenol A, determined after heat treating the tetrabromo bisphenol A at a temperature of 260° C. for a period of 15 minutes.
Abstract:
A method for the purification of a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine of formula (I), the method comprising heating a reaction mixture comprising a phenolphthalein compound of formula (II) and a primary arylamine of formula (III) in the presence of an acid catalyst to form a reaction mixture; removing water from the reaction mixture; quenching the reaction mixture with an aqueous alkali solution to form a quenched reaction mixture; extracting the quenched reaction mixture with an aminoaryl compound of formula (IV) to form an organic layer and an extracted aqueous layer comprising a crude 2-aryl-3,3-bis(hydroxyaryl)phthalimidine compound; contacting the extracted aqueous layer with carbon to form a semi-purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine compound; and mixing the semi-purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine compound with a solution comprising an alcohol and an acid to form a purified 2-aryl-3,3-bis(hydroxyaryl)phthalimidine of formula (I); wherein formulas (I), (II), (III), and (IV) are as provided herein.
Abstract:
Methods for synthesizing and purifying 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine compounds are provided. The method includes heating a reaction mixture including a phenolphthalein, a primary aryl amine, and an acid catalyst to form a phthalimidine; precipitating the phthalimidine from the reaction mixture to provide a crude phthalimidine; providing a solution including the crude phthalimidine, an additive, and at least one solvent; contacting the solution with one or more purification agents to provide a treated solution; precipitating and recovering a phthalimidine adduct from the treated solution; and recovering a purified phthalimidine compound from the adduct.
Abstract:
A method for the manufacture of a 2-aryl-3,3-bis(hydroxyaryl)phthalimidine including heating a reaction mixture comprising a phenolphthalein compound and a primary arylamine in the presence of an acid catalyst, and a heterocyclic aromatic amine co-catalyst, to form the 2-aryl-3,3-bis(hydroxyaryl) is provided. Polymers including structural units derived from the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine are provided. Methods for the manufacture of a polycarbonate, including manufacturing the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine, and polymerizing the 2-aryl-3,3-bis(hydroxyaryl)phthalimidine in the presence of a carbonate source are provided.
Abstract:
A thermosetting composition, comprising a 4,4′-(((3-oxo-2-hydrocarbylisoindoline-1,1-diyl)bis(4,1-arylene))bis(oxy)) diphthalonitrile compound of formula (1) wherein R is a C1-12 hydrocarbyl, preferably a C1-6 alkyl or a C6-12 aryl; each occurrence of R2 and R3 is independently a hydrogen, a halogen, or a C1-25 hydrocarbyl, preferably hydrogen or a C1-6 alkyl, more preferably a hydrogen or C1-3 alkyl; and p and q are each independently 0 to 4, preferably 0 or 1, more preferably 0.
Abstract:
A thermoset polymer product comprising 4,4′-(((3-oxo-isoindoline-1,1-diyl)bis(4,1-arylene))bis(oxy))dibenzonitrile units of formula (2) wherein the units are derived from a 4,4′-(((3-oxo-isoindoline-1,1-diyl)bis(4,1-arylene))bis(oxy))diphthalonitrile monomer of formula (1) wherein R is a C1-25 hydrocarbyl, preferably a C1-6 alkyl, a phenyl, or a phenyl substituted with up to five C1-6 alkyl groups, more preferably a C1-3 alkyl or a phenyl; each occurrence of R2 and R3 is independently a hydrogen, a halogen, or a C1-25 hydrocarbyl, preferably a hydrogen, a halogen, or a C1-6 alkyl, more preferably a hydrogen or a C1-3 alkyl; p and q are each independently 0 to 4, preferably 0 or 1, more preferably 0; and G is a residue of a cyano group, and is a C1-25 hydrocarbyl linking group having a valence of at least 2.
Abstract:
Methods for synthesizing and purifying 2-aryl-3,3-bis(4-hydroxyaryl)phthalimidine compounds are provided. The method includes heating a reaction mixture including a phenolphthalein, a primary aryl amine, and an acid catalyst to form a phthalimidine; precipitating the phthalimidine from the reaction mixture to provide a crude phthalimidine; providing a solution including the crude phthalimidine, an additive, and at least one solvent; contacting the solution with one or more purification agents to provide a treated solution; precipitating and recovering a phthalimidine adduct from the treated solution; and recovering a purified phthalimidine compound from the adduct.