Abstract:
A touch sensor is disclosed to include a first mesh touch electrode formed in a first direction and transmitting a first touch signal, a first supplementary mesh touch electrode formed on the same layer as the first mesh touch electrode, an insulating layer covering the first mesh touch electrode and the first supplementary mesh touch electrode and having a contact cutout, a second mesh touch electrode formed in a second direction crossing the first direction and transmitting a second touch signal, and a second supplementary mesh touch electrode formed on the same layer as the second mesh touch electrode. In this touch sensor, the first mesh touch electrode is connected to the second supplementary mesh touch electrode through the contact cutout and the second mesh touch electrode is connected to the first supplementary mesh touch electrode through the contact cutout.
Abstract:
A touch panel includes a substrate including a touch area and a non-touch area adjacent to the touch area, a conductive polymer layer disposed on the substrate, and a touch sensor unit disposed between the conductive polymer layer and the touch area of the substrate. The conductive polymer layer includes a polymer wiring pattern disposed in the non-touch area of the substrate and includes a conductive polymer connected to the touch sensor unit.
Abstract:
An electrowetting display device includes a base substrate, a hydrophobic layer disposed on the base substrate and including at least about 49 atomic percent (at %) of fluorine atoms in a surface thereof, a wall disposed on the base substrate which partitions a pixel area, and an electrowetting layer that includes a first fluid and a second fluid, which are disposed in the pixel area and are immiscible with each other. The second fluid has an electrical conductivity or a polarity. The electrowetting display device further includes an electronic device is configured to apply an electric field to the electrowetting layer to control the electrowetting layer.
Abstract:
A touch sensor device including a first conductive pattern disposed on a substrate and a first polymer layer disposed on the first conductive pattern. The first polymer layer includes a first conductive region and a first non-conductive region. The touch sensor device also includes a second polymer layer disposed on the first polymer layer. The second polymer layer includes a second conductive region and a second non-conductive region.
Abstract:
A display apparatus includes a base substrate, a pixel on the base substrate, and a color filter part between the base substrate and the pixel. The pixel includes a cover layer defining a TSC (Tunnel Shaped Cavity) on the base substrate, an image display part provided in the TSC, and first and second electrodes which apply an electric field to the image display part.
Abstract:
A touch sensor device includes first touch electrodes and second touch electrodes disposed on a substrate, and a polymer layer including a polymer material disposed on the first and second touch electrodes and on a substantially entire area of the substrate, in which the polymer layer includes conductive and non-conductive regions.
Abstract:
A touch screen panel and manufacturing method thereof are disclosed. In one aspect, the touch screen panel includes a substrate having a touch area and a peripheral area that surrounds the touch area and a plurality of first touch electrode patterns that are formed in the touch area, extend in a first direction, and are configured to transmit a first touch signal. The touch panel also includes a plurality of second touch electrode patterns that are formed in the touch area, extend in a second direction crossing the first direction, and are configured to transmit a second touch signal and a plurality of first driving circuit wirings that are formed in the peripheral area and are respectively electrically connected to the first touch electrode patterns. The first driving circuit wirings include a low resistance wiring layer.
Abstract:
A touch sensor is disclosed to include a first mesh touch electrode formed in a first direction and transmitting a first touch signal, a first supplementary mesh touch electrode formed on the same layer as the first mesh touch electrode, an insulating layer covering the first mesh touch electrode and the first supplementary mesh touch electrode and having a contact cutout, a second mesh touch electrode formed in a second direction crossing the first direction and transmitting a second touch signal, and a second supplementary mesh touch electrode formed on the same layer as the second mesh touch electrode. In this touch sensor, the first mesh touch electrode is connected to the second supplementary mesh touch electrode through the contact cutout and the second mesh touch electrode is connected to the first supplementary mesh touch electrode through the contact cutout.
Abstract:
A display apparatus includes a base substrate, a pixel on the base substrate, and a color filter part between the base substrate and the pixel. The pixel includes a cover layer defining a TSC (Tunnel Shaped Cavity) on the base substrate, an image display part provided in the TSC, and first and second electrodes which apply an electric field to the image display part.
Abstract:
A touch screen panel includes: a substrate; electrode patterns disposed on the substrate; insulation patterns disposed partially covering the electrode patterns, the insulation patterns defining openings, wherein at least a part of top surfaces of the electrode patterns are exposed through the openings; connecting conductive patterns disposed on the insulation patterns, the connecting conductive patterns filling at least a part of the openings and being electrically connected to the electrode patterns; and wirings disposed on at least a portion of the connecting conductive patterns.