Abstract:
A touch screen panel provided in an image display device. The touch screen panel includes: a transparent substrate; a plurality of first sensing patterns on the transparent substrate and coupled to each other along a first direction; a first insulating film on the first sensing patterns; a plurality of second sensing patterns on the first insulating film and coupled to each other along a second direction, the first and second sensing patterns being alternately arranged not to overlap with each other; and a second insulating film on the second sensing patterns, wherein the first insulating film and the second insulating film are composed of materials having different optical refractive indexes.
Abstract:
There is provided a touch screen panel in which sensing cells as touch sensors are formed on one surface of a substrate. The sensing cells are realized by laminating transparent conductive layers and mesh-shaped opaque metal layers. Therefore, uniform distribution of an electric field may be secured when a large area touch screen panel is realized and an operation may be performed although short is partially generated in the mesh-shaped opaque metal layers.
Abstract:
A touch screen panel includes a thin film substrate having sensing patterns formed thereon that is implemented as an isotropic film, and a polarizing plate is disposed on the sensing patterns so that it is possible to minimize or reduce degradation of image quality. The touch screen panel includes a thin film substrate, sensing patterns, and sensing lines. The thin film substrate is divided into an active area and a non-active area. The sensing patterns are formed in the active area of the thin film substrate. The sensing lines are formed in the non-active area of the thin film substrate so as to be connected to the sensing patterns. In the touch screen panel, the thin film substrate is implemented as an isotropic film.
Abstract:
A flexible touch screen panel with sensing electrodes formed of different materials is disclosed. In one aspect, the panel includes a substrate, a plurality of first and second sensing electrodes, a plurality of first and second position detection lines, and a pad portion. The substrate is divided into an active area, and first and second non-active area formed at the outside of the active area. The plurality of first sensing electrodes are arranged along a first direction and the plurality of second sensing electrodes are arranged along a second direction in the active area. The plurality of first and second position detection lines are formed in the first non-active area, and respectively connected to the plurality of first and second sensing electrodes. The pad portion is formed in the second non-active area, and has a plurality of pads electrically connected to the plurality of first and second position detection lines. The first and second sensing electrodes are formed of different materials from each other.
Abstract:
A touch screen panel includes a substrate having first and second surfaces opposite to each other, a plurality of first sensing electrodes formed on the first surface of the substrate and connected in a first direction, a plurality of second sensing electrodes arranged between the first sensing electrodes and connected in a second direction intersecting the first direction, first connecting patterns connecting the first sensing electrodes in the first direction, a plurality of third sensing electrodes formed on the second surface of the substrate and overlapping the first sensing electrodes, a plurality of fourth sensing electrodes arranged between the third sensing electrodes and overlapping the second sensing electrodes, and second connecting patterns connecting the fourth sensing electrodes in the second direction. The sensing electrodes of the first surface and the sensing electrodes of the second surface overlap each other and are electrically connected to each other through vertical connecting units.
Abstract:
A touch screen panel includes a substrate having a first surface and a second surface opposite the first surface, a plurality of first sensing electrodes coupled in a first direction, and a plurality of second sensing electrodes coupled in a second direction crossing the first direction, the first and second sensing electrodes being on the first surface, a plurality of third sensing electrodes overlapping the first sensing electrodes, a plurality of fourth sensing electrodes overlapping the second sensing electrodes, the third and fourth sensing electrodes being on the second surface, wherein the sensing electrodes on the first surface and the sensing electrodes on the second surface overlapping each other are electrically coupled to each other through coupling units for coupling the first surface of the substrate and the second surface of the substrate to each other.
Abstract:
In one aspect, a touch panel comprising a substrate and a first conductive patterned portion that is formed on the substrate is provided. The first conductive patterned portion may include: a first direction conductive portion that is formed on the substrate, the first direction conductive portion including a plurality of first body members, a first intermediate member formed between the first body members, and a first connection member which is electrically connected to the first body members; and a second direction conductive portion that is formed on the substrate and is insulated from the first direction conductive portion, the first intermediate member including a plurality of second body members and a second connection member which is electrically connected to the second body members.
Abstract:
A touch screen panel includes: a substrate; electrode patterns disposed on the substrate; insulation patterns disposed partially covering the electrode patterns, the insulation patterns defining openings, wherein at least a part of top surfaces of the electrode patterns are exposed through the openings; connecting conductive patterns disposed on the insulation patterns, the connecting conductive patterns filling at least a part of the openings and being electrically connected to the electrode patterns; and wirings disposed on at least a portion of the connecting conductive patterns.
Abstract:
A touch panel includes a plurality of sensing electrodes, a plurality of wirings and an electrostatic discharge pattern. The plurality of sensing electrodes is disposed on a substrate. The plurality of wirings extends from the plurality of sensing electrodes. A bottom surface of the plurality of wirings has the same height as a bottom surface of the plurality of sensing electrodes. The electrostatic discharge pattern is electrically connected to the plurality of wirings.
Abstract:
A flexible touch screen panel includes a substrate having flexibility, sensing electrodes on at least one surface of the substrate, and implemented using an opaque conductive metal, and a polarizing plate on the substrate having the sensing electrodes formed thereon. The sensing electrodes may be implemented in a mesh shape having a plurality of openings.