Abstract:
A touch screen panel and manufacturing method thereof are disclosed. In one aspect, the touch screen panel includes a substrate having a touch area and a peripheral area that surrounds the touch area and a plurality of first touch electrode patterns that are formed in the touch area, extend in a first direction, and are configured to transmit a first touch signal. The touch panel also includes a plurality of second touch electrode patterns that are formed in the touch area, extend in a second direction crossing the first direction, and are configured to transmit a second touch signal and a plurality of first driving circuit wirings that are formed in the peripheral area and are respectively electrically connected to the first touch electrode patterns. The first driving circuit wirings include a low resistance wiring layer.
Abstract:
An etchant composition including 0.5 wt % to 20 wt % of a persulfate, 0.01 wt % to 1 wt % of a fluorine compound, 1 wt % to 10 wt % of an inorganic acid, 0.01 wt % to 2 wt % of an azole-based compound, 0.1 wt % to 5 wt % of a chlorine compound, 0.05 wt % to 3 wt % of a copper salt, 0.01 wt % to 5 wt % of an antioxidant or a salt thereof, based on a total weight of the etchant composition, and water in an amount sufficient for the total weight of the etchant composition to be equal to 100 wt % is disclosed. The etchant composition is suitable for use in forming a metal wiring by etching a metal layer including copper or in fabricating a thin film transistor substrate for a display apparatus.
Abstract:
The disclosure provides a cleaning agent composition for a flat panel display device, including: polyaminocarboxylic acid; alkali base; a nonionic surfactant; and a fluoride component. The cleaning agent composition for the flat panel display device can effectively remove metal oxides and organic contaminants on the substrate without impairing a transparent conductive layer.
Abstract:
An input sensor of a display device includes: a sensing electrode on a base insulating layer and overlapping a sensing region; and a signal line electrically connected to the sensing electrode and overlapping the non-sensing region, and including: a first conductive layer on the base insulating layer and having a first reflectance, a first conductivity, and a first thickness; a second conductive layer having a second reflectance lower than the first reflectance, a second conductivity lower than the first conductivity, and a second thickness smaller than the first thickness, wherein the second conductive layer is on and in contact with the first conductive layer; and a third conductive layer between the base insulating layer and the first conductive layer, in contact with each of the base insulating layer and the first conductive layer, wherein the third conductive layer contains a material different from that of the second conductive layer.
Abstract:
A liquid crystal display includes: a substrate; a gate line and a data line disposed on the substrate; a semiconductor layer disposed on the substrate; first and second field generating electrodes disposed on the substrate; and a first protecting layer formed from the same layer as the first field generating electrode and covering at least a portion of the data line.
Abstract:
A etchant composition that includes, based on a total weight of the etchant composition, about 0.5 wt % to about 20 wt % of a persulfate, about 0.5 wt % to about 0.9 wt % of an ammonium fluoride, about 1 wt % to about 10 wt % of an inorganic acid, about 0.5 wt % to about 5 wt % of a cyclic amine compound, about 0.1 wt % to about 10.0 wt % of a sulfonic acid, about 5 wt % to about 10 wt % of an organic acid or a salt thereof, and a remainder of water. The etchant composition may be configured to etch a metal layer including copper and titanium, to form a metal wire that may be included in a thin film transistor array panel of a display device.
Abstract:
An etchant composition is provided comprising a persulfate from 0.5 to 20 wt %; a fluoride compound from 0.01 to 2 wt %; an inorganic acid from 1 to 10 wt %; a N (nitrogen atom)-containing heterocyclic compound from 0.5 to 5 wt %; a chloride compound from 0.1 to 5 wt %; a copper salt from 0.05 to 3 wt %; an organic acid or an organic acid salt from 0.1 to 10 wt %; an electron-donating compound from at 0.1 to 5 wt %; and a solvent of the residual amount. Also provided is a method of manufacturing a display device by using the same.
Abstract:
A thin film transistor array panel includes: a gate line on a substrate and including a gate electrode; a first gate insulating layer on the substrate and the gate line, the first gate insulting layer including a first portion adjacent to the gate line and a second portion overlapping the gate line and having a smaller thickness than that of the first portion; a second gate insulating layer on the first gate insulating layer; a semiconductor layer on the second gate insulating layer; a source electrode and a drain electrode spaced apart from each other on the semiconductor layer; a passivation layer on the second gate insulating layer, the source electrode and the drain electrode; and a pixel electrode on the passivation layer and connected with the drain electrode. The first gate insulating layer and the second gate insulating layer have stress in opposite directions from each other.
Abstract:
A thin film transistor substrate includes a gate electrode disposed on a substrate; a semiconductor layer partially overlapping the gate electrode, the semiconductor layer including an oxide semiconductor material; a source electrode and a drain electrode disposed on the semiconductor layer, the source electrode and the drain electrode including a barrier layer, a main wiring layer disposed on the barrier layer, and a first capping layer disposed on the main wiring layer and being spaced apart from each other; and second capping layers covering lateral surfaces of the main wiring layers of the source and drain electrodes.
Abstract:
An etchant composition is provided comprising a persulfate from 0.5 to 20 wt %; a fluoride compound from 0.01 to 2 wt %; an inorganic acid from 1 to 10 wt %; a N (nitrogen atom)-containing heterocyclic compound from 0.5 to 5 wt %; a chloride compound from 0.1 to 5 wt %; a copper salt from 0.05 to 3 wt %; an organic acid or an organic acid salt from 0.1 to 10 wt %; an electron-donating compound from at 0.1 to 5 wt %; and a solvent of the residual amount. Also provided is a method of manufacturing a display device by using the same.