Abstract:
A display apparatus includes a display panel, a printed circuit board, a first film electrically connected to the display panel and the printed circuit board, and a second film electrically connected to the display panel and the printed circuit board. The display panel includes panel pads of a first row electrically connected to the first film, panel pads of a second row electrically connected to the second film, and panel connecting lines electrically connecting the panel pads of the first row to the panel pads of the second row.
Abstract:
Disclosed is a display apparatus including: a display panel including pixels connected with a plurality of gate lines and a plurality of data lines; a gate driver supplying gate signals to the gate lines; and a data driver supplying data voltages to the data lines. The data driver includes a temperature measurer generating a temperature signal of the data driver.
Abstract:
A display device including: a display panel including a plurality of pixels; and a data driver configured to arrange the display panel into a plurality of pixel blocks, and to output a data voltage with different slew rates to the plurality of pixel blocks, wherein the slew rates are based on distances of the plurality of pixel blocks from the data driver, wherein a boundary between adjacent pixel blocks with different slew rates is changeable.
Abstract:
A display panel driving apparatus includes an image pattern analyzing part, a clock signal generating part and a data driving part. The image pattern analyzing part is configured to analyze an image pattern of an image data. The clock signal generating part is configured to generating a clock signal having a different pulse width according to the image pattern of an image data. The data driving part is configured to drive a data line of a display panel in response to the clock signal. Thus, power consumption and heating of the data driving part may be decreased.
Abstract:
A liquid crystal display having data driving apparatus comprising first and second output switches, a charge sharing line, and first and second charge sharing switches. The first output switch switches an electrical connection between a first amplifier providing a positive gradation voltage and a first data line in response to a control signal. The second output switch switches an electrical connection between a second amplifier providing a negative gradation voltage and a second data line in response to the control signal. The first charge sharing switch switches an electrical connection between the first data line and the charge sharing line in response to the control signal. The second charge sharing switch switches an electrical connection between the second data line and the charge sharing line in response to the control signal.
Abstract:
A data driver includes a plurality of amplifiers configured to output a plurality of data voltages to a plurality of data lines. The amplifiers are configured to output the data voltages to the corresponding data lines in a writing mode. Only one of the plurality of amplifiers is configured to output a sensing data voltage to the plurality of data lines in a sensing mode.
Abstract:
A display device includes a display panel, a source driver, and an alignment detection circuit. The display panel includes data lines and pads connected to the data lines. The source driver includes output lines connected to the pads to supply a data signal, and a detection circuit to selectively connect a first detection line supplied with a first detection voltage and a second detection line supplied with a second detection voltage to the output lines. The alignment detection circuit includes a detection capacitor connected between the first detection line and the second detection line, and a voltage detection circuit connected to one end of the detection capacitor to detect a voltage of the detection capacitor. The detection circuit connects a (2n−1)-th output line of the output lines to the first detection line, and connects a (2n)-th output line of the output lines to the second detection line.
Abstract:
A controller for a display panel includes a detector, a timing controller, and a voltage generator. The detector detects a predetermined pattern in an image signal. The timing controller generates a control signal based on detection of the pattern. The voltage generator changes at least one driving voltage for a display panel from a first level to a second level based on the control signal. The predetermined pattern may correspond to at least one region having a predetermined arrangement of at least first and second gray scale values of pixels in an image corresponding to the image signal.
Abstract:
A display device including: a display panel displaying an image based on first and second frames; a timing controller outputting a plurality of image signals for each of the first and second frames and outputting a test signal during a reset section; and a source driving chip outputting a plurality of data voltages corresponding to the image signals or a test voltage corresponding to the test signal. The reset section is arranged after the first frame and before the second frame, and the source driving chip blocks the data voltage in the second frame from being output to driving lines having an arrival time period equal to or less than a reference time period during the reset section, the arrival time period representing the amount of time taken to arrive at the test voltage from an initial voltage.
Abstract:
A gate driver includes a gate integrated circuit (“IC”) chip which receives at least two scanning start signals and at least four clock control signals, and outputs a plurality of gate-on voltages, where at least two clock control signals of the at least four clock control signals are generated based on one scanning start signal of the at least two scanning start signals, timings of the at least two scanning start signals are independent of each other, and timings of the at least two clock control signals based on the one scanning start signal are independent of each other.