Abstract:
Disclosed is a method of providing content related to capture of a medical image of an object. The method includes acquiring at least one of information related to a state of the object and information related to a capture protocol, determining content to be provided to the object on a basis of the acquired information, and outputting the determined content.
Abstract:
Provided are a method of obtaining a water-fat separation image and a magnetic resonance imaging (MRI) apparatus including a controller configured to obtain first partial k-space data, second partial k-space data, and third partial k-space data, respectively based on a first partial echo signal, a second partial echo signal, and a third partial echo signal, which are magnetic resonance signals corresponding to a plurality of echo times with respect to an object, obtain first reconstruction image data, second reconstruction image data, and third reconstruction image data with respect to the object, respectively based on the first partial k-space data, the second partial k-space data, and the third partial k-space data, and obtain first water image data, first fat image data, and first phase image data of the object, respectively based on the first reconstruction image data, the second reconstruction image data, and the third reconstruction image data, by using a Dixon technique.
Abstract:
A magnetic resonance imaging apparatus includes: a radio frequency (RF) controller configured to control a period of an RF pulse to be applied to an object for a time period that includes a first obtaining time, during which a first inversion RF pulse is applied, and a second obtaining time; and a signal transceiver configured to sequentially receive, during the first obtaining time, a first RF signal for generating a first fluid attenuated inversion recovery (FLAIR) image regarding a first slice of the object and a second RF signal for generating at least one magnetic resonance (MR) image regarding a second slice of the object.
Abstract:
A mobile terminal includes a communicator configured to communicate with wearable devices; a memory configured to store capability information indicating capabilities of the wearable devices; and a processor configured to determine a first wearable device and a second wearable device among the wearable devices capable of executing a function of the mobile terminal, based on the capability information, the first wearable device being configured to perform a first sub-function for executing the function of the mobile terminal, the second wearable device being configured to perform a second sub-function to be executed together with the first sub-function to execute the function of the mobile terminal,the processor being configured to control the first wearable device to perform the first sub-function and to control the second wearable device to perform the second sub-function.
Abstract:
A method of providing content related to capture of a medical image of an object is provided. The method includes acquiring at least one of information related to a state of the object and information related to a capture protocol, determining content to be provided to the object on a basis of the acquired information, and outputting the determined content.
Abstract:
The MRI apparatus includes a processor configured to apply a gradient echo pulse sequence that makes a sum of gradients applied during one repetition time (TR) in a slice selection direction, a phase encoding direction, and a frequency encoding direction equal zero and maintains spins in an object in a steady state; alternately apply, while the gradient echo pulse sequence is continuously applied, a first radio frequency (RF) pulse having a first flip angle and a second RF pulse having a second flip angle that is different from the first flip angle at each TR interval; and generate an MR image based on an echo signal acquired when the spins are in the steady state
Abstract:
A magnetic resonance imaging (MRI) apparatus includes a radio frequency (RF) receiver which acquires a magnetic resonance (MR) signal received by at least one channel coil, and an image processor which acquires a data set of a k-space for the at least one channel coil by oversampling the MR signal in a readout direction of the k-space, divides the data set into a plurality of sub-data sets, and acquires an MR image based on the plurality of sub-data sets.
Abstract:
The MRI apparatus includes: a radio frequency (RF) transmitter configured to transmit an RF signal including multiple frequency signals corresponding respectively to multiple slices of an object to excite the multiple slices of the object; a gradient amplifier configured to apply a three-dimensional (3D) spatial encoding; an RF receiver configured to receive MR signals in an overlapped state from the multiple slices in a same repetition time (TR) period; and an image processor configured to acquire 3D k-space data based on the MR signals and acquire an MR image of each of the multiple slices based on the 3D k-space data.
Abstract:
A system and a method of providing metadata for a slide show to an external device are provided. The method includes determining a plurality of images for the slide show, grouping the determined plurality of images into a plurality of image groups, generating a plurality of metadata groups that respectively correspond to the plurality of image groups, and sequentially transmitting the generated plurality of metadata groups to the external device. The plurality of metadata groups include metadata regarding images included in an image group that corresponds to the plurality of metadata groups.
Abstract:
Disclosed is a method of providing content related to capture of a medical image of an object. The method includes acquiring at least one of information related to a state of the object and information related to a capture protocol, determining content to be provided to the object on a basis of the acquired information, and outputting the determined content.