Abstract:
An ultrasound probe includes a transmission unit configured to generate a transmission signal; and a modulator configured to generate a modulation signal having a pulse width proportional to a size of an amplitude of the transmission signal at a peak level and a base level for each period of the transmission signal.
Abstract:
Disclosed herein are an ultrasonic apparatus for imaging an ultrasonic signal and a control method for the same. The ultrasonic apparatus may include a transducer configured to irradiate a plurality of ultrasonic waves which have different traveling directions onto an object and to collect a plurality of echo ultrasonic waves reflected from the object; and a controller configured to acquire a plurality of sound velocities of the plurality of ultrasonic waves in the object and to compound the acquired plurality of sound velocities in order to determine a composite sound velocity in the object.
Abstract:
A transmit beamforming apparatus, receive beamforming apparatus, ultrasonic probe having the same, ultrasonic diagnostic apparatus, and beamforming method are provided. The transmit beamforming apparatus for transmitting ultrasound beams by using a plurality of ultrasonic transducer elements includes a transmit beamformer configured for forming a transmit signal pattern by applying a delay time to a transmit signal that corresponds to at least one of the plurality of ultrasonic transducer elements; and a transmission controller configured for determining a delay frequency to be applied in conjunction with the application of the delay time.
Abstract:
An ultrasonic apparatus includes a transducer configured to irradiate ultrasonic waves in different traveling directions onto an object and collect echo ultrasonic waves reflected from the object, and a controller configured to determine blood flow velocities of blood flowing in the object based on the echo ultrasonic waves, compound the determined blood flow velocities, and determine a composite blood flow velocity of the blood flowing in the object based on the compounded blood flow velocities.
Abstract:
The ultrasonic diagnostic apparatus includes an ultrasonic transducer array in which ultrasonic transducer elements are two-dimensionally arranged; and a controller configured to control the ultrasonic transducer elements to transmit ultrasonic signals and control the ultrasonic transducer elements arranged in rows of the ultrasonic transducer array to sequentially receive ultrasonic echo signals.
Abstract:
A beamforming apparatus configured to beamform ultrasound waves transmitted through an ultrasound transducer having a two-dimensional transducer array includes a transmitter configured to output transmission pulses configured to drive elements constituting the transducer array, and a transmission switch configured to select at least two elements among the elements to form an aperture such that the transmission pulses drive the elements forming the aperture.
Abstract:
Disclosed herein is an ultrasonic diagnostic apparatus including: an ultrasonic probe including an ultrasonic transducer array; and an ultrasonic diagnostic apparatus main body comprising a transceiver configured to transmit and receive ultrasonic waves via the ultrasonic transducer array, an image processor configured to generate an ultrasonic image of an object based on an ultrasonic echo signal acquired via the transceiver, a communication unit configured to wirelessly communicate with a docking station, and a charge unit configured to charge power which is received wirelessly from the docking station via the communication unit, in a charge battery. Therefore, it is possible to efficiently supply power to the ultrasonic diagnostic apparatus main body regardless of time and place, and to improve mobility and portability of the ultrasonic diagnostic apparatus main body.
Abstract:
Disclosed herein is an ultrasonic imaging apparatus. The ultrasonic imaging apparatus includes an ultrasonic probe arranged at a distal end portion of the ultrasonic imaging apparatus and a bending part connected to the ultrasonic probe and configured to be bendable. Heat generated by the ultrasonic probe is dissipated toward the bending part.
Abstract:
Disclosed herein is an ultrasonic probe configured to release heat generated by a transducer to an exterior of the ultrasonic probe via a heat pipe and a radiator. The ultrasonic probe includes a housing; a transducer configured to generate ultrasonic waves while disposed in an interior of the housing; a heat pipe configured to transfer the heat generated by the transducer; a radiator connected to the heat pipe and configured to release the heat, which is transferred via the heat pipe, to the exterior of the housing; and a partition wall configured to separate an inside space within the housing.