Abstract:
A spin torque oscillation generator includes a spin reference layer and a spin oscillation layer. The spin reference layer has a first magnetization direction. The spin reference layer is configured to receive a current and generate a spin-polarized current. The spin oscillation layer has a second magnetization direction. The second magnetization direction is different than the first magnetization direction. The spin oscillation layer is configured to receive the spin-polarized current from the spin reference layer. The spin-polarized current generates a spin torque based on the second magnetization direction of the spin oscillation layer. The spin torque generates a spin torque output signal.
Abstract:
Apparatus for recording data and method for making the same. In accordance with some embodiments, a recording layer is supported by a substrate. The recording layer has a granular magnetic recording layer with a first oxide content, a continuous magnetic recording layer with nominally no oxide content, and an oxide gradient layer disposed between the respective granular magnetic recording layer and the continuous magnetic recording layer. The oxide gradient layer has a second oxide content less than the first oxide content of the granular layer.
Abstract:
Data storage systems having barriers that may reduce erasure flux and increase write-ability are provided. Data storage systems include a writing element. The writing element has a write pole with a flare region. A magnetic flux barrier is located along the write pole flare region. The magnetic flux barrier is illustratively made from an in-plane magnetically anisotropic material that has an easy plane of magnetization. In another embodiment, a data storage system includes a writing element having an air bearing surface and a shield at the air bearing surface. The shield has a magnetic permeability of approximately zero. The shield illustratively includes alternating layers of positive and negative permeabilities. The shield optionally includes a plurality of shields that may include top, bottom, and side shields.
Abstract:
Provided herein is a method including oxidizing tops of features of a patterned magnetic layer to form oxidized tops of the features; removing an excess of an applied first protective material down to at least the oxidized tops of the features to form a planarized layer; and applying a second protective material over the planarized layer.
Abstract:
An apparatus includes a non-metallic interlayer between a magnetic data storage layer and a heat sink layer, wherein interface thermal resistance between the interlayer and the heat sink layer is capable of reducing heat flow between the heat sink layer and the magnetic data storage layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include thermal resistor layer positioned between the interlayer and the heat sink layer.
Abstract:
An apparatus includes a non-metallic interlayer between a magnetic data storage layer and a heat sink layer, wherein interface thermal resistance between the interlayer and the heat sink layer is capable of reducing heat flow between the heat sink layer and the magnetic data storage layer. The apparatus may be configured as a thin film structure arranged for data storage. The apparatus may also include thermal resistor layer positioned between the interlayer and the heat sink layer.
Abstract:
An apparatus includes a spin torque oscillator, a sensor, and a processing unit. The spin torque oscillator is configured to receive a current and to generate a microwave output signal. The sensor is configured to detect the microwave output signal and to detect changes to frequency of the detected microwave output signal responsive to changes in an external magnetic field. The processing unit is configured to receive a sensed signal from the sensor. The processing unit is further configured to process the sensed signal and the changes to the frequency to determine magnitude and direction associated with the external magnetic field.
Abstract:
Provided herein is an apparatus including a top continuous layer and a bottom continuous layer under the top continuous layer. The top continuous layer and the bottom continuous layer are antiferromagnetically coupled. A number of granular columns are under the bottom continuous layer. The number of granular columns include at least a first granular layer under the bottom continuous layer and a second granular layer also under the first granular layer. The first granular layer and the second granular layer are separated by a non-magnetic spacer. The first granular layer and the second granular layer are ferromagnetically coupled. The first granular layer is antiferromagnetically coupled to the bottom continuous layer.
Abstract:
Aspects include recording media with enhanced areal density through reduction of head media spacing, head keeper spacing, or head to soft underlayer spacing. Such aspects comprise replacing currently non-magnetic components of devices, such as interlayers and overcoats with components and compositions comprising magnetic materials. Other aspects relate to magnetic seed layers deposited within a recording medium. Preferably, these aspects, embodied as methods, systems and/or components thereof reduce effective magnetic spacing without sacrificing physical spacing.
Abstract:
A method of forming a patterned media includes constraining growth of magnetic grains in a down-track direction without constraining the growth in a radial direction to cause the magnetic grains to align in rows extending in the radial direction. The patterned media may allow for data track radial width to be defined independent of grain size.