Abstract:
An object of the present invention is to provide a light emitting element having slight increase in driving voltage with accumulation of light emitting time. Another object of the invention is to provide a light emitting element having slight increase in resistance value with increase in film thickness. A light emitting element of the invention includes a first layer for generating holes, a second layer for generating electrons and a third layer comprising a light emitting substance between first and second electrodes. The first and third layers are in contact with the first and second electrodes, respectively. The second and third layers are connected to each other so as to inject electrons generated in the second layer into the third layer when applying the voltage to the light emitting element such that a potential of the second electrode is higher than that of the first electrode.
Abstract:
In the present invention, a light-emitting element operating at low driving voltage, consuming low power, emitting light with good color purity and manufactured in high yields can be obtained. A light-emitting element is disclosed with a configuration composed of a fist layer containing a light-emitting material, a second layer, a third layer are formed sequentially over an anode to be interposed between the anode and a cathode in such a way that the third layer is formed to be in contact with the cathode. The second layer is made from n-type semiconductor, a mixture including that, or a mixture of an organic compound having a carrier transporting property and a material having a high electron donor property. The third layer is made from p-type semiconductor, a mixture including that, or a mixture of an organic compound having a carrier transporting property and a material having a high electron acceptor property.
Abstract:
It is an object of the present invention to provide a material which is excellent in a hole injecting property and a hole transporting property, and to provide a light emitting element and a light emitting device using a material which is excellent in a hole injecting property and a hole transporting property. The present invention provides a carbazole derivative represented by a general formula (1). The carbazole derivative according to the present invention is excellent in the hole injecting property. By using the carbazole derivative according to the present invention as a hole injecting material for a hole injecting layer of a light emitting element, a driving voltage can be reduced. In addition, a lower driving voltage, improvement of the luminous efficiency, a longer life time, and higher reliability can be realized by applying the material to a light emitting element or a light emitting device.
Abstract:
Light-emitting elements have a problem that their light-extraction efficiency is low due to scattered light or reflected light inside the light-emitting elements. The light-extraction efficiency of the light-emitting elements needs to be enhanced by a new method. According to the present invention, a light-emitting element includes a first layer generating holes, a second layer including a light-emitting layer for each emission color and a third layer generating electrons between an anode and a cathode, and the thickness of the first layer is different depending on each layer including the light-emitting layer for each emission color. A layer in which an organic compound and a metal oxide are mixed is used as the first layer, and thus, the driving voltage is not increased even when the thickness is increased, which is preferable.
Abstract:
An object of the present invention is to provide a light emitting element having slight increase in driving voltage with accumulation of light emitting time. Another object of the invention is to provide a light emitting element having slight increase in resistance value with increase in film thickness. A light emitting element of the invention includes a first layer for generating holes, a second layer for generating electrons and a third layer comprising a light emitting substance between first and second electrodes. The first and third layers are in contact with the first and second electrodes, respectively. The second and third layers are connected to each other so as to inject electrons generated in the second layer into the third layer when applying the voltage to the light emitting element such that a potential of the second electrode is higher than that of the first electrode.
Abstract:
An object of the present invention is to provide a composite material formed of an organic compound and an inorganic compound, and has an excellent carrier transporting property, an excellent carrier injecting property to the organic compound, as well as excellent transparency. A composite material of the present invention for achieving the above object is a composite material of an organic compound represented in the general formula below, and an inorganic compound. For the inorganic compound, an oxide of a transition metal, preferably an oxide of a metal belonging to groups 4 to 8 of the periodic table, in particular vanadium oxide, tantalum oxide, molybdenum oxide, tungsten oxide, rhenium oxide, and ruthenium oxide, can be used.