Abstract:
[Problem]To provide a fluorescence detection apparatus that is capable of simultaneously detecting a plurality of analyte components contained at different concentrations with a wide measurement range.[Solution]A fluorescence detection apparatus 100 includes a cell 110 into which an analyte of a sample is introduced, a light source 130 that irradiates excitation light on the analyte in the cell; a first detector 52 that detects fluorescence generated from the analyte after the excitation light has been irradiated on the analyte, and a second detector 53 that detects the fluorescence generated from the analyte after the excitation light has been irradiated on the analyte. The second detector detects the fluorescence with a measurement range that is different from the measurement range of the first detector, and the first detector and second detector detect the fluorescence simultaneously.
Abstract:
The present invention addresses the problem of identifying a biomarker of renal failure, said biomarker being available from urine or blood, and fluctuating from an early stage than glomerular filtration rate and serum creatinine level, and thus developing a technique for diagnosing early stage kidney failure. A method for analyzing the blood, plasma, serum or urine of a renal failure suspected subject comprises a step of measuring the concentration of a pair of D-form and L-form of at least one amino acid selected from the amino acid group consisting of [D-serine] and [L-serine], etc., contained in the blood, plasma, serum or urine of the subject, and calculating, as an pathological index of the subject, the ratio of the D-form concentration to the L-form concentration or the percentage of the D-form concentration relative to the total concentration of the D-form and L-form.
Abstract:
The present invention addresses the problem of developing an analytical method which makes it possible to diagnose early or mild renal disorders. The method is based on calculating a disease-state index value for renal disorders on the basis of the quantities of D-form and/or L-form amino acids, from feces or intestinal content. By comparing the disease-state index value with a threshold value determined from the disease-state index values of a renal failure patient group and a healthy subject group, it is possible to diagnose a mild renal disorder patient group.
Abstract:
The present invention addresses the problem of providing a novel method for the pretreatment of a biological sample containing lenalidomide enantiomer and thereby establishing a simple and accurate method for the quantitative analysis of lenalidomide enantiomer. In the present invention, the racemization and decomposition of lenalidomide enantiomer in a biological sample can be prevented by the deproteinization under acidic conditions of the biological sample containing lenalidomide enantiomer, and the lenalidomide enantiomer can be simply and accurately quantitatively analyzed by subjecting to HPLC the biological sample that has been pretreated in such a way.
Abstract:
The present invention addresses the problem of identifying a biomarker of renal failure, said biomarker being available from urine or blood, and fluctuating from an early stage than glomerular filtration rate and serum creatinine level, and thus developing a technique for diagnosing early stage kidney failure. A method for analyzing the blood, plasma, serum or urine of a renal failure suspected subject comprises a step of measuring the concentration of a pair of D-form and L-form of at least one amino acid selected from the amino acid group consisting of [D-serine] and [L-serine], etc., contained in the blood, plasma, serum or urine of the subject, and calculating, as an pathological index of the subject, the ratio of the D-form concentration to the L-form concentration or the percentage of the D-form concentration relative to the total concentration of the D-form and L-form.
Abstract:
A method for quantitatively analyzing cysteine and cysteine includes a first step of adding a methyl-sulfurating agent to a sample that includes cysteine and cystine to obtain a methyl-sulfurated cysteine, a second step of adding a derivatizing agent to the methyl-sulfurated cysteine and the cystine to obtain a cysteine derivative and a cystine derivative, respectively, and a third step of quantifying the cysteine derivative and the cystine derivative.
Abstract:
The object of the present invention is to develop a reagent for optical resolution for the analysis of chiral amino acids wherein quenching is not exhibited. This object is achieved by providing a novel compound for optical resolution wherein quenching is not exhibited. The present invention relates to a novel compound, a reagent for optical resolution comprising the novel compound, a method for optically resolution comprising a step of reacting the novel compound, and optical isomers obtained by reacting the novel compound with amino acids.
Abstract:
The present invention addresses the problem of identifying a biomarker of renal failure, said biomarker being available from urine or blood, and fluctuating from an early stage than glomerular filtration rate and serum creatinine level, and thus developing a technique for diagnosing early stage kidney failure. A method for analyzing the blood, plasma, serum or urine of a renal failure suspected subject comprises a step of measuring the concentration of a pair of D-form and L-form of at least one amino acid selected from the amino acid group consisting of [D-serine] and [L-serine], etc., contained in the blood, plasma, serum or urine of the subject, and calculating, as an pathological index of the subject, the ratio of the D-form concentration to the L-form concentration or the percentage of the D-form concentration relative to the total concentration of the D-form and L-form.